Nuclear Engineering 180 Fall Semester 2001 Second Examination

Seventy-Five Minutes, Closed Book. One $8 - \frac{1}{2}$ " × 11" Sheets of Notes Allowed.

1. A plasma has an ion temperature profile given by:

$$T_i(x) = T_0(1 - (\frac{x}{a}))$$

and $T_0 = 15.0$ KeV, and a = 1.0 m. The magnetic field $B_z(x = 0)$ is 4.0 T. The plasma my be considered infinite in the y and z directions.

- a. Find the classical ion heat flux at x = 0. Assume that the density at a = 0 is 10^{20} m⁻³ and that the ions are deuterium.
- b. If the electrons are at a temperature of 10.0 keV at x = 0, then find the volumetric ion-to-electron heat exchange rate. (Hint: the formula is $Q_{ei} = 3n(T_e T_i)/\tau_e$.)
- c. If the electron temperature gradient is zero, find the current carried in the plasma through the pressure balance. Give magnitude, direction, and sign.
- d. Find the volumetric heating from ohmic heating at a = 0. Give the answer in megawatts per cubic meter.
- 2. A *DT* ICF target is compressed to $100 \times$ liquid density. ($\rho_{liq} = 0.25$ g/cc). The electron temperature is 10.0 keV. Find:
 - a. The electron plasma frequency ω_{pe}
 - b. The yield of the target if $\rho R = 10 \text{ g cm}^{-2}$ and the burnup fraction is fifty percent,
 - c. The minimum energy of photons which can penetrate into the plasma,
 - d. The density at which the phase velocity for laser light at 3530Å is twice the speed of light, expressed as a fraction of the compressed density.