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Question 1
A Kinetic Sculpture

20 Points

As shown in Figure 1, a particle of mass m is attached to a fixed point O by an inextensible
massless string whose length ℓ is varied as a function of time by a force P. In addition to the
tension force, a vertical gravitational force −mgE3 acts on the particle.
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Figure 1: Schematic of a particle of mass m which is attached to a fixed point O by a cable of length ℓ(t). A

vertical gravitational force −mgE3 acts on the particle.

In your answers to the questions below, please make use of the results on spherical polar coor-
dinates on Page 3.

(a)(5 Points) What is the constraint on the motion of the particle? Give a prescription and
physical interpretation for the constraint force enforcing this constraint.

(b) (5 Points) Establish the pair of second-order differential equations governing the motion
of the particle.

(c) (5 Points) Show that, while the total energy E of the particle isn’t conserved, the angular
momentum HO · E3 of the particle is conserved during the motion of the particle.

(d) (5 Points) Show that the magnitude of the force P is

||P|| =
∣

∣

∣
mℓ̈−mℓ

(

θ̇2 sin2 (φ) + φ̇2
)

+mg cos(φ)
∣

∣

∣
. (1)
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Question 2
A Particle on a Catenary

30 Points

As shown in Figure 2, a particle of massm is free to move on a rough catenary y = A cosh
(

x−x0

ℓ

)

+
y0 and z = 0 where A, ℓ, y0, and x0 are constants. The coefficients of static and dynamic friction
between the particle and the catenary are denoted by µs and µk, respectively.
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Figure 2: Schematic of a particle of mass m which is moving on a rough catenary in E
3 under the influence of

a gravitational force −mgE2.

To establish the equations of motion for the particle, the following curvilinear coordinate system
is defined for E3:

q1 = x, q2 = η = y − A cosh

(

x− x0

ℓ

)

, q3 = z. (2)

(a) (5 Points) What are the covariant basis vectors ak for this coordinate system? You will
find it helpful here and in the sequel to use the abbreviations f = A cosh

(

x−x0

ℓ

)

and fx =
A
ℓ
sinh

(

x−x0

ℓ

)

(b) (5 Points) Show that the contravariant basis vectors for this system are

a1 = E1, a2 = E2 −
A

ℓ
sinh

(

x− x0

ℓ

)

E1, a3 = E3. (3)

Compute the matrix
[

aik
]

.

(c) (15 Points) Assuming the particle is in motion on the rough catenary y = A cosh
(

x−x0

ℓ

)

+y0
and z = 0 under a gravitational force −mgE2, establish the equations of motion for the particle.
In your solution, give a clear prescription for the constraint force.

(d) (5 Points) Suppose that the particle is stationary on the rough curve. Determine the friction
and normal forces acting on the particle.
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Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates {R, φ, θ} are defined using Cartesian coordinates
{x = x1, y = x2, z = x3} by the relations:

R =
√

x2
1 + x2

2 + x2
3 , θ = arctan

(

x2

x1

)

, φ = arctan

(

√

x2
1 + x2

2

x3

)

.

In addition, it is convenient to define the following orthonormal basis vectors:




eR
eφ
eθ



 =





cos(θ) sin(φ) sin(θ) sin(φ) cos(φ)
cos(θ) cos(φ) sin(θ) cos(φ) − sin(φ)
− sin(θ) cos(θ) 0


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Figure 3: Spherical polar coordinates

For the coordinate system {R, φ, θ}, the covariant basis vectors are

a1 = eR , a2 = Reφ , a3 = R sin(φ)eθ.

In addition, the contravariant basis vectors are

a1 = eR , a2 =
1

R
eφ , a3 =

1

R sin(φ)
eθ.

For a particle of mass m which is unconstrained, the linear momentum G, angular momentum
HO and kinetic energy T of the particle are

G = mṘa1 +mφ̇a2 +mθ̇a3 ,

HO = mR2
(

φ̇eθ − θ̇ sin(φ)eφ

)

,

T =
m

2

(

Ṙ2 +R2φ̇2 +R2 sin2(φ)θ̇2
)

.

3



Common Errors

In grading this midterm exam, I noticed that the following errors frequently appeared:

1. For Problem 1, while ||P|| = ||Fc = λeR||, this doesn’t imply that P = Fc. Also some
student erroneously wrote that F = Fc + P − mgE3. This is not the case. The correct
statement is F = Fc −mgE3 = λeR −mgE3. The constraint force acting on the particle
is equivalent to a tension force λeR.

2. For Problem 2 (c), many students incorrectly wrote down an expression for Fc. This force
consists of a normal force and a dynamic friction force. Note that vrel = ẋa1 and, because
a1 · a2 6= 0, Ff appears in two of Lagrange’s equations.

3. For Problem 2(d), the constraint force has three components and two equivalent represen-
tations:

Fc =

3
∑

k=1

λka
k = N+ Ff . (4)

where
N = λ2a

2 + λ3a
3, Ff = F 1

f a1 6= λ1a
1. (5)

and ||Ff || ≤ µs ||N||.
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