
UC Berkeley – Computer Science
CS61B: Data Structures

Midterm #1, Spring 2019

This test has 9 questions across 10 pages worth a total of 320 points, and is to be completed in 110 minutes.

The exam is closed book, except that you are allowed to use one double sided written cheat sheet (front

and back). No calculators or other electronic devices are permitted. Give your answers and show your

work in the space provided. Write the statement out below in the blank provided and sign. You may

do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points

0 1 6 55

1 24 7 28

2 24 8 55

3 0 9 58

4 35

5 40

 TOTAL 320

Name: __________________________

SID: ___________________________

GitHub Account # : sp19-s_____

Person to Left’s # : sp19-s_____

Person to Right’s #: sp19-s_____

Exam Room: _____________________

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but

bear in mind that we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are

comfortable first. Do not get overly captivated by interesting design issues or complex corner

cases you’re not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the

exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is

not ‘does not compile.’

• ○ indicates that only one circle should be filled in.

• □ indicates that more than one box may be filled in.

• For answers which involve filling in a ○ or □, please fill in the shape completely.

UC BERKELEY

GitHub Account #: sp19-s______

 2

0. So it begins (1 point). Write your name and ID on the front page. Write the exam room. Write the IDs

of your neighbors. Write the given statement and sign. Write your GitHub account # (e.g. sp19-s185) in

the corner of every page. Enjoy your free point ☺.

1. Static Swap.

a) (12 points) Consider the class shown below. On each line with a swap method, fill in the boxes

for every variable that is changed by that swap method call. If a swap method causes no

change, fill in “none” for that line. No syntax errors or runtime errors occur.

public class StaticSwap {
 public static int staticX = 5;
 public static int staticY = 10;
 public static void swap(int x, int y) {
 int temp = x; x = y; y = temp;
 }
 public static void staticSwap(int x, int y) {
 int temp = staticX; staticX = staticY; staticY = temp;
 }
 public static void main(String[] args) {
 int a = 5;
 int b = 10;
 swap(a, b);

 swap(staticX, staticY);

 staticSwap(a, b);

 staticSwap(staticX,staticY);
 }
}

b) (12 points) Now imagine that every variable was of type String instead of type int. No

syntax errors or runtime errors occur. Assume swap and staticSwap have been redefined

to take Strings.

 public static String staticX = “goose”;
 public static String staticY = “hare”;
 public static void main(String[] args) {
 String a = “moose”;
 String b = “bear”;
 swap(a, b);

 swap(staticX, staticY);

 staticSwap(a, b);

 staticSwap(staticX,staticY);

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

□ a □ b □ staticX □ staticY □ none

CS61B MIDTERM 1, SPRING 2019

GitHub Account #: sp19-s______

 3

2. JUnit (24 points). The Object class in Java defines the equals method as shown below.

public boolean equals(Object obj) { return (this == obj); }

The org.junit.Assert.assertEquals method looks like:

public static void assertEquals(Object expected, Object actual) {
 if (!expected.equals(actual)) { recordFailure(expected, actual); }
}

Suppose we define a class called Dog as follows:

1: public class Dog {
2: private int size; private List<String> favoriteFoods;
3: public Dog(int s, List<String> f) { size = s; favoriteFoods = f; }
4: public boolean equals(Dog o) {
5: if (this.size != o.size) {
6: return false;
7: }
8: if (this.favoriteFoods != o.favoriteFoods) {
9: return false;
10: }
11: return true;
12: }
13: public String toString() { ... };
14: }

Suppose we write a test as follows:

@Test

public void testBananaTofu() {
 Dog D1 = new Dog(5, List.of("banana", "tofu")); // List.of(...) creates a
 Dog D2 = new Dog(5, List.of("banana", "tofu")); // java.util.List<String>
 assertEquals(D1, D2);
}

Due to at least one error in the Dog class, this test fails with: “expected:Dog<5, [banana, tofu]>
but was:Dog<5, [banana, tofu]>”. Explain what you’d need to change so that the Dog class is

correct and also passes testBananaTofu. Refer to line numbers where possible. You may not need

all lines. Your changes should be written in English, but can include code.

Change 1: ___

Change 2: ___

Change 3: ___

Change 4: ___

Change 5: _______________ ______________________________________

UC BERKELEY

GitHub Account #: sp19-s______

 4

3. PNH (0 points) What famous work begins with this famous line? “In those days, in those far remote

days, in those nights, in those faraway nights, in those years, in those far remote years, at that time the

wise one who knew how to speak in elaborate words lived in the land.”

4. a) More JUnit (10 points). Suppose we add a method equalLists to our AList class with the

signature below. This method returns true if the given List61B has all the same items as the current

AList in the same order. Your midterm 1 reference sheet might be useful for this problem.

public boolean equalLists(List61B<T> otherList)

Write a JUnit test that verifies that this method correctly returns true when called with an SLList as an

argument. Your lists should be of length 3. Assume all JUnit classes needed have been imported.

 public void testAListEqualToSLListOFLength3() {
 SLList<Integer> sll = new SLList<>();

 AList<Integer> all = new AList<>();

 }
b) (25 points) Write the method equalLists. It should work for all possible inputs, not just your

JUnit test above. Your method must be non-destructive. You may not need all lines.

public class AList<T> { ...
 public boolean equalLists(List61B<T> otherList) {
 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 }

CS61B MIDTERM 1, SPRING 2019

GitHub Account #: sp19-s______

 5

5. SLList (40 points). Suppose we have an SLList as defined in lecture, with a single sentinel node at

the front. See your midterm 1 reference sheet for the names of the fields.

Fill in the recursive insert method below. You may not need all lines. Do not write more than one

statement on each line. You may not use any for or while loops!

Assume this insert method is part of the SLList class.

/** Inserts item into given index. For example, if the list is currently
 * [0, 10, 20, 30], and we call insert(25, 3), the list will become
 * [0, 10, 20, 25, 30]. If we then call insert(-5, 0), the list will become
 * [-5, 0, 10, 20, 25, 30]. */
 public void insert(T item, int index) {
 if (index < 0 || index > size()) {

 throw new IllegalArgumentException();
 }
 _____________________________________;

 _____________________________________;

 }

 private void insert(T item, int index, _____________) {
 if (________________) {

 _____________________________________;

 _____________________________________;

 } else {
 _____________________________________;

 _____________________________________;

 }
 }

Page 5 Relaxxxxxxxxxxxxx-zone: Chill. Out. In. This. Zone.

UC BERKELEY

GitHub Account #: sp19-s______

 6

6. XList. Let’s define a new type of list known as an IntXList that only has an addLast operation.

An IntXList is a hybrid of the SLList and AList ideas. In an XList, the data is stored as an array of

IntSLLists, where each IntSLList must have size <= 4. When addLast is called, we always use

the first list with available space. IntXLists store integers, i.e. are not generic.

For example, suppose we have created an IntXList and then call addLast(0), addLast(1),

addLast(2), addLast(3), and addLast(4). This would result in the box-and-pointer diagram

below:

a) (20 points) Fill in the addLast method for the XList class so that it is correct and has reasonable

performance. Assume that the resize method correctly resizes the IntSLList array. If you’re stuck,

consider doing part b first.

public class IntXList {
 private IntSLList[] items;
 private int size;
 public IntXList() {
 items = new IntSLList[1];
 items[0] = new IntSLList();
 } // after calling resize,
 private void resize(int numSLLists) { // IntSLList[] items will be of
 … // length numSLLists
 }
 public void addLast(int x) {
 if (__________________________________) {

 resize(_____________________);

 }
 items[__________________].____________________

 size += 1;
 }
}

CS61B MIDTERM 1, SPRING 2019

GitHub Account #: sp19-s______

 7

b) (35 points) Fill in the resize method in the IntXList class. You may not need both loops or all

lines.

 private void resize(int numSLLists) {
 IntSLList[] temp = ______________________;

 for (________________;________________;________________) {

 __________________________________;

 }

 for (________________;________________;________________) {

 _____________________________________;

 }

 ___;

 ___;

 }

7) Yeah One of These Problems (28 points). Suppose we define the following two classes:

public class Deity {
 public void smite(Object o) { System.out.println("DO"); }
 public void smite(Deity o) { System.out.println("DD"); }
 public void smite(Titan o) { System.out.println("DT"); }
}
public class Titan extends Deity {
 public void smite(Object o) { System.out.println("TO"); }
 public void smite(Deity o) { System.out.println("TD"); }
 public void smite(Titan o) { System.out.println("TT"); }
}
For each of the lines below, fill in the bubble for the string that is printed. Or if the line has a compile or

runtime error, fill in the “runtime error” (RE) or “compile error” (CE) bubble instead.

Titan T = new Titan();

Deity D = new Deity();
Deity Colette = new Titan();

T.smite(Colette);

T.smite((Deity) Colette);

T.smite(D);

T.smite((Object) D);

((Deity) T).smite(D);

T.smite((Titan) D);

((Object) T).smite(D);

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

○DO ○DD ○DT ○TO ○TD ○TT ○RE ○CE

UC BERKELEY

GitHub Account #: sp19-s______

 8

8. MetaComparison (55 points). Given an IntList x, an IntList y, and a Comparator<Integer>

C, the IntListMetaComparator performs a comparison between x and y.

Specifically, the IntListMetaComparator performs a pairwise comparison of all the items in x and

y. If the lists are of different lengths, the extra items in the longer list are ignored. Let 𝛼 be the number

of items in x that are less than the corresponding item in y according to C. Let 𝛽 be the number of items

in x that are greater than the corresponding item in y according to C. If 𝛼 < 𝛽, then x is considered less

than y. If 𝛼 = 𝛽, then x is considered equal to y. If 𝛼 > 𝛽, then x is considered greater than y. For

example:

 Comparator<Integer> c = new FiveCountComparator();//compares # of fives
 IntList x = [55, 70, 90, 115, 5]; //e.g. 515 has 2 fives
 IntList y = [150, 35, 215, 25];
 IntListMetaComparator ilmc = new IntListMetaComparator(c);
 ilmc.compare(x, y); // returns negative number

For the example above, according to the FiveCountComparator 55 > 150, 70 < 35, 90 < 215, 115 =

25. We have that 𝛼 = 2 and 𝛽 = 1, and thus ilmc.compare will return a negative number.

public class IntListMetaComparator implements Comparator<IntList> {

 public IntListMetaComparator(Comparator<Integer> givenC) {

 }

 /* Returns negative number if more items in x are less,
 Returns positive number if more items in x are greater.
 If one list is longer than the other, extra items are ignored.
 */
 public int compare(IntList x, IntList y) {
 if ((__________________) || (____________________)) {

 }

 __

 if (______________________) {

 return __________________________;

 } else if (______________________) {

 return __________________________________;

 } else {

 return __________________________________;

 }

} // Your reference sheet has a definition for IntList

CS61B MIDTERM 1, SPRING 2019

GitHub Account #: sp19-s______

 9

9. Cool Iterators.

a) (16 points) Suppose we have an Iterator as defined below.

public class CoolIterator implements Iterator<Integer> {
 IntList L;

 public CoolIterator(IntList input) {
 L = input;
 }

 public boolean hasNext() {
 return L != null;
 }

 private IntList getNext(int x, IntList p) {
 if (p == null) { return null; }
 if (x == 0) { return p; }
 return getNext(x - 1, p.rest);
 }

 public Integer next() {
 int first = L.first;
 L = getNext(L.first, L);
 return first;
 }

 public static void main(String[] args) {
 IntList L = IntList.of(new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9});
 CoolIterator ci = new CoolIterator(L);
 while (ci.hasNext()) {
 System.out.print(ci.next());
 }
 }
}

What will be the output of the main method above? ____________________________________

UC BERKELEY

GitHub Account #: sp19-s______

 10

b) (42 points) Suppose we want to build a BookendIterator class that iterates over only the first and

last values provided by another Iterator. For example, if we run the code below, the code should print

“cats” then “space”.

List<String> L2 = List.of("cats", "live", "in", "space");
Iterator<String> it2 = L2.iterator();
Iterator<String> bit2 = new BookendIterator<>(it2);
while (bit2.hasNext()) {
 System.out.println(bit2.next());
}
Fill in the code for BookendIterator below. You may assume that the input Iterator has at least

two values (i.e. it’s OK if your code crashes or behaves strangely for an iterator with < 2 values)!

Partial credit will be especially hard to earn for this problem. To receive 10% credit and skip this

problem, fill in this box and leave the code below blank: □

public class BookendIterator<T> implements Iterator<T> {
 __

 __

 __

 public BookendIterator(Iterator<T> input) {
 __

 __

 __

 __

 __

 }
 public boolean hasNext() {
 __

 __

 __

 }
 public T next() {
 if (!hasNext()) { throw new NoSuchElementException(); }
 __

 __

 __

 __

 __

 __

 __

 __

 }
}

