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Problem 1 (50 points) Consider a DT-LTI filter F whose impulse response is given
by

∀n ∈ Z, f(n) = δ(n) + δ(n− 1) + δ(n− 2)

(a) (20 points) The frequency response of the filter can be expressed as follows:

∀ω ∈ R, F (ω) = A(ω)eiαω

where A(ω) = 1 + 2 cos(ω) and α is a real-valued quantity.

(i) (5 points) Determine α explicitly.
A plot of f(n) will show its region of support is S , {0, 1, 2} and f(n) = 1
for n ∈ S.

F (ω) =
∞∑

n=−∞

f(n) e−iωn (1)

= e−iω(0) + e−iω + e−i2ω (2)

Expanding F (ω) = A(ω) eiαω into complex exponentials, we get

F (ω) = A(ω) eiαω (3)

= (1 + 2 cos(ω)) eiαω (4)

=

(
1 + 2

eiω + e−iω

2

)
eiαω (5)

= eiαω + ei(α+1)ω + ei(α−1)ω (6)

Now, we can pattern-match: the exponential with the smallest factor mul-
tiplying iω in (2) is eiω(−2), and the corresponding exponential in (6) is
eiω(α−1), so −2 = α− 1 =⇒ α = −1. You can plug α = −1 back into (6) to
verify the two expressions for F (ω) match.

(b) (10 points) Provide a well-labeled plot of the magnitude response |F (ω)|.

|F (ω)| =
∣∣(1 + 2 cos(ω)) e−iω

∣∣ (7)

= |1 + 2 cos(ω)|
∣∣e−iω∣∣︸ ︷︷ ︸

1

(8)

= |1 + 2 cos(ω)| (9)

Since A(ω) is real-valued, the modulus operator | · | in (9) is just an absolute
value.
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(c) (5 points) Let the input to the filter be

∀n ∈ Z, x(n) = 1 + (−1)n + cos

(
2πn

3

)
Determine a reasonably simple expression for, and provide a well-labeled plot
of, the corresponding output y(n).

The input is easily decomposed into a linear combination of complex exponen-
tial functions:

x(n) = ei(0)n︸ ︷︷ ︸
1

+ ei(π)n︸ ︷︷ ︸
(−1)n

+
1

2
e−i(2π/3)n +

1

2
ei(2π/3)n︸ ︷︷ ︸

cos(2πn/3)

(10)

From the eigenfunction property of LTI systems,

eiωn → F (ω) eiωn (11)

It is apparent the filter will “kill” the frequencies at −2π/3 = 4π/3 and 2π/3 by
looking at our magnitude plot in (b). We can verify this is the case algebraically.

ei(−2π/3)n → F

(
−2π

3

)
ei(−2π/3)n =

(
1 + 2 cos

(
−2π

3

))
e−i(2π/3)ei(−2π/3)n (12)

=

(
1 + 2×−1

2

)
e−i(2π/3)ei(−2π/3)n (13)

= 0 (14)

Likewise for ei(2π/3)n.

Applying the frequency response to the other frequencies,

ei(0)n → A(0) e−i(0)ei(0)n = (1 + 2 cos(0)) = 3 (15)

ei(π)n → A(π) e−iπei(π)n = (1 + 2 cos(π))(−1) eiπn = −(1− 2)(−1)n = (−1)n
(16)

y(n) = 3 + (−1)n (17)
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(d) (30 points) We place the filter F in cascade (series) with another DT-LTI filter G:

All the nonzero values of the impulse response of system G appear below:

(i) (10 points) Show that the impulse response of the overall system H is

∀n ∈ Z, h(n) = δ(n) + δ(n− 5) + δ(n− 10)

y(n) = (f ∗ x)(n) (18)
r(n) = (g ∗ y)(n) = (g ∗ (f ∗ x))(n) = ((g ∗ f) ∗ x)(n) (19)
h(n) = (f ∗ g)(n) (20)

= δ(n) ∗ g(n) + δ(n− 1) ∗ g(n) + δ(n− 2) ∗ g(n) (21)
= g(n) + g(n− 1) + g(n− 2) (22)
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(In the figure above, we applied small offsets to the red and orange signals
so they do not completely overlap with each other and the blue signal.)
Summing at each sample, we get:
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As desired, the corresponding expression is:

h(n) = δ(n) + δ(n− 5) + δ(n− 10) (23)

(ii) (5 points) Determine a reasonably simple expression for the output r(n)
if the input is

∀n ∈ Z, x(n) = 1 + cos
(πn

5

)
+ sin

(
2πn

15

)

y(n) = (h ∗ x)(n) (24)
= δ(n) ∗ x(n) + δ(n− 5) ∗ x(n) + δ(n− 10) ∗ x(n) (25)
= x(n) + x(n− 5) + x(n− 10) (26)

x(n− 5) = 1 + cos

(
π(n− 5)

5

)
+ sin

(
2π(n− 5)

15

)
(27)

= 1 + cos
(πn

5
− π

)
+ sin

(
2πn

15
− π

3

)
(28)

= 1− cos
(πn

5

)
+ sin

(
2πn

15
− 2π

3

)
(29)
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x(n− 10) = 1 + cos

(
π(n− 10)

5

)
+ sin

(
2π(n− 10)

15

)
(30)

= 1 + cos
(πn

5

)
+ sin

(
2πn

15
− 4π

3

)
(31)

= 1 + cos
(πn

5

)
− sin

(
2πn

15
− π

3

)
(32)

y(n) = x(n) + x(n− 5) + x(n− 10) (33)

= 3 + cos
(πn

5

)
(34)

We used the fact that sin(x− π) = − sin(x)—likewise for cos(·)—to cancel
one pair of cos(·) terms, and another pair of sin(·) terms.

(iii) (15 points) We can factor the polynomial p(z) = z10 + z5 + 1 as p(z) =
a(z) b(z), where

a(z) = a8z
8 + a7b

7 + · · ·+ a1z + a0 b(z) = b2z
2 + b1z + b0

Determine the factorization polynomials a(z) and b(z) explicitly (by de-
termining their respective coefficients numerically).
All the coefficients are integers. Don’t do anything wild. Think first be-
fore you tackle this part. It should not involve much work (despite the
large space we’ve given you below). The result should be stunningly
beautiful, as should the process of getting there.
a(z), b(z), and p(z) resemble g(n), f(n), and h(n), respectively. In particu-
lar, we “encoded” each sample of amplitude awith delay k as a monomial
azk.
If we write out the frequency responses of f(n) and g(n), respectively,

F (ω) =
∞∑

k=−∞

f(k) e−iωk = f(0) e−iω(0) + f(1) e−iω(1) + f(2) e−iω(2) (35)

G(ω) =
∞∑

k=−∞

g(k) e−iωk = g(0) e−iω(0) + g(1) e−iω(1) + · · ·+ f(8) e−iω(8)

(36)

H(ω) =
∞∑

k=−∞

h(k) e−iωk = h(0) e−iω(0) + h(5) e−iω(5) + h(10) e−iω(10) (37)

Now, call e−iω = z, so we can rewrite F (ω) and G(ω) as

F (ω) = f(0) z0 + f(1) z1 + f(2) z2 (38)
G(ω) = g(0) z0 + g(1) z1 + · · ·+ g(8) z8 (39)
H(ω) = h(0) z0 + h(5) z5 + h(10) z10 (40)
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Then, the overall frequency response will be

H(ω) = F (ω)G(ω) (41)

=
(
f(0) z0 + f(1) z1 + f(2) z2

)︸ ︷︷ ︸
b(z)

(
g(0) z0 + g(1) z1 + · · ·+ g(8) z8

)︸ ︷︷ ︸
a(z)

(42)

= p(z) (43)

Therefore,

b0 = b1 = b2 = 1 (44)
a0 = a3 = a5 = a8 = 1 (45)

a1 = a4 = a7 = −1 (46)
a2 = a6 = 0 (47)

Problem 2 (40 points) Consider the DT-LTI filter F whose input-output behavior
is described by

∀n ∈ Z, y(n) = x(n)− 0.9x(n− 1)

(a) (10 points) Determine and provide a well-labeled plot of f(n), the impulse
response of the filter.

Setting x(n) = δ(n),

f(0) = δ(0)− 0.9δ(−1) = 1 (48)
f(1) = δ(1)− 0.9δ(0) = −0.9 (49)

For all other n 6∈ {0, 1}, the argument to both δ(·) will be nonzero, so the im-
pulse response there will be zero. Therefore,

f(n) = δ(n)− 0.9δ(n− 1) (50)

(b) (5 points) Is the system BIBO stable? Provide a succinct, yet clear and convinc-
ing explanation.

Yes—a DT-LTI system is BIBO-stable iff its impulse response is absolutely summable,
which it is in this case.

∞∑
k=−∞

|f(k)| = 1 + 0.9 = 1.9 <∞ (51)
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(c) (10 points) Determine the output of the system in response to the input

∀n ∈ Z, x(n) = 0.9nu(n) + 0.9nu(−n)

y(n) = (f ∗ x)(n) (52)
= δ(n) ∗ x(n) + 0.1δ(n− 1) ∗ x(n) (53)
= x(n)− 0.9x(n− 1) (54)

Since u(0) = u(−0) = 1, we can rewrite x(n) as x(n) = 0.9n + δ(n), so

y(n) = 0.9n + δ(n)− 0.9× 0.9n−1 − 0.9× δ(n− 1) (55)
= 0.9n − 0.9n + δ(n)− 0.9δ(n− 1) (56)
= δ(n)− 0.9δ(n− 1) (57)

(d) (10 points) Determine a reasonably simple expression for the frequency re-
sponse F (ω), and provide well-labeled plots of the magnitude response |F (ω)|
and phase response ∠F (ω).

F (ω) = f(0) + f(1) e−iω = 1− 0.9e−iω (58)

While exact closed-form solutions for the magnitude and phase response are
somewhat complicated, we can get a pretty good idea about the behavior of
the frequency response by analyzing the response graphically in the complex
plane.

Re{F (ω)}

Im{F (ω)}

1

0.9|F (ω)|

∠F (ω)

x

1− 0.9e−iω|ω=0

x 1− 0.9e−iω|ω=π
2

Figure 1: F (π/2) (not to scale)

Here we show in green the complex valued function F (ω) for a couple of val-
ues of ω. ∠F (ω) and |F (ω)| are shown in orange and red, and in this case
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correspond to ω = 3π
2

. |F (ω)| will be at its minimum of 0.1 at ω = 0 and at its
maximum of 1.9 at ω = π (this is a highpass filter). ∠F (0) = ∠F (π) = 0, and
the phase will rise above zero slightly on ω ∈ (0, π) and dip below zero slightly
on ω ∈ (0, π).
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(e) (5 points) We place the filter F in cascade (series) with another DT-LTI filter G:

Determine the impulse response g(n) and frequency response G(ω) of the sys-
tem G, such that r(n) = x(n). In other words, we want the system G to be the
inverse of the system F.

If G is the inverse of F, then it should appear that h(n) = δ(n).

H(ω) =
∞∑

k=−∞

h(k) e−iωk = h(0)︸︷︷︸
δ(0)

e−iω(0) = 1 (59)

H(ω) = F (ω)G(ω) (60)

=⇒ G(ω) =
H(ω)

F (ω)
(61)

=
1

1− 0.9e−iω
(62)

Using pattern matching we can tell that the corresponding impulse response
is:

g(n) = 0.9nu(n) (63)

There are other ways to achieve g(n) aside from pattern matching. For ex-
ample, we can use the following approach: Now, we can retrieve difference
equation y(n)→ r(n) from the frequency response.

G(ω)− 0.9e−iωG(ω) = 1 (64)

G(ω) eiωn − 0.9eiω(n−1)G(ω) = eiωn (65)
r(n)− 0.9r(n− 1) = y(n) (66)

G is causal, by inspection, so g(n) = 0,∀n < 0.

g(0)− 0.9g(−1) = g(0) = δ(0) = 1 (67)
g(1)− 0.9g(0) = δ(1) = 0 =⇒ g(1) = 0.9g(0) = 0.9 (68)
g(2)− 0.9g(1) = δ(2) = 0 =⇒ g(2) = 0.9g(1) = 0.9 ∗ 0.9 (69)

g(n) = (0.9)nu(n) (70)

For another alternative solution, you can note that we are searching for g(n)
such that

h(n) = f(n) ∗ g(n) = δ(n) (71)
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Given the input signal x(n) the intermediate signal y(n) = x(n) ∗ f(n) is the
input to g, and so r(n) = y(n) ∗ g(n). Because we design g(n) to be the inverse
of f(n), we know that r(n) = x(n).

Now, we say that we search for an input x̂(n) such that ŷ(n) = x̂(n) ∗ f(n) =
δ(n). This means we have r(n) = ŷ(n) ∗ g(n) = δ(n) ∗ g(n) = g(n). So, in the
end, we have g(n) = r(n) = x̂(n). So to find g(n) we must find an input to f(n)
that yields δ(n) as its output.

This can be done by inspection, using intuition about convolution and the flip-
and-shift method. Because of the nature of f(n) we look for an input such that
subtracting 0.9 ∗ x(n − 1) from x(n) will yield 0 for all n 6= 0. This leads to
an exponential decay function, and the unit step function is so that it is not
uniformly zero but instead is 1 for n = 0.
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Problem 3 (40 points) The input-output behavior of a BIBO-stable, discrete-time
LTI filter F is described by the lienar, constant-coefficient difference equation

y(n) = γy(n− 1)− γ?x(n) + x(n− 1), where |γ| < 1

(a) (10 points) Provide a delay-adder-gain block diagram implementation of the
filter. Your implementation must use the minimum number of delay blocks
needed.

x(n) −γ?

z−1

+ y(n)

z−1γ

Swapping the order of the gain and delay blocks for the y(n) feedback path
would have also been fine.

(b) (20 points) Show that the frequency response of the filter is given by

∀ω ∈ R, F (ω) =
e−iω − γ?

1− γe−iω
,

and provide a well-labeled plot of the magnitude response |F (ω)|.
Apply the eigenfunction property (eiωn → F (ω) eiωn) to the difference equation.

F (ω) eiωn = γF (ω) eiω(n−1) − γ?eiωn + eiω(n−1) (72)

F (ω) = γF (ω) e−iω − γ? + e−iω (73)(
1− γe−iω

)
F (ω) =

(
e−iω − γ?

)
(74)

F (ω) =
e−iω − γ?

1− γe−iω
(75)

|F (ω)| =
∣∣∣∣e−iω 1− γ?eiω1− γe−iω

∣∣∣∣ (76)

=
∣∣e−iω∣∣︸ ︷︷ ︸

1

∣∣∣∣1− (γe−iω)
?

1− γe−iω

∣∣∣∣ (77)

We note:
1−

(
γe−iω

)?
=
(
1− γe−iω

)? (78)
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And:

|γ| = |γ?| as for γ = a+ bi, γ? = a− bi −→
√

(a)2 + (b)2 =
√

(a)2 + (−b)2 (79)

F must be an all-pass filter (that is, it has unity gain for all frequencies).

|F (ω)| =
∣∣(1− γe−iω)?∣∣
|1− γe−iω|

= 1 (80)

−π −π/2 π/2 π

0.5

1

1.5

ω

|F (ω)|

(c) (10 points) Determine a reasonably simple expression for f(n), the impulse
response of the filter.

By inspection, the system is causal, since the output at time n depends only on
previous outputs and inputs at or before n.

f(n) = 0, ∀n < 0 (81)
f(0) = γf(−1)− γ?δ(0) + δ(−1) = −γ? (82)
f(1) = γf(0)− γ?δ(1) + δ(0) = −γγ? + 1 = −|γ|2 + 1 (83)

f(2) = γ
(
1− |γ|2

)
(84)

f(n) = γf(n− 1) = γn−1
(
1− |γ|2

)
(85)

Problem 4 (50 points) The impulse response of a CT-LTI filter H is given by

h(t) = δ(t)− 2αe−αtu(t)

where α > 0. In one or more parts of this problem, you may or may not find it
useful to know that if the impulse response of a BIBO stable continuous-time LTI
system is

βe−γt, then its frequency response is
β

iω + γ

where γ and β are, in general, complex scalars, with the value of γ consistent with
BIBO stability.

12



(a) (30 points) Determine a reasonably simple expression for H(ω), the frequency
response of the filter, and provide well-labeled plots for the magnitude re-
sponse |H(ω)| and phase response ∠H(ω).

H(ω) =

∫ ∞
−∞

h(t) e−iωtdt (86)

=

∫ ∞
−∞

(
δ(t)− 2αe−αtu(t)

)
e−iωtdt (87)

=

∫ ∞
−∞

δ(t) e−iωtdt−
∫ ∞
−∞

2αe−αtu(t) e−iωtdt (88)

=

∫ ∞
−∞

e−iω(0)δ(t) dt− 2α

∫ ∞
0

e−αte−iωtdt (89)

=

∫ ∞
−∞

δ(t) dt− 2α

∫ ∞
0

e−(α+iω)tdt (90)

= 1 + 2α
e(−α−iω)t

α + iω

∣∣∣t=∞
t=0

(91)

= 1− 2α

iω + α
(92)

=
iω + α

iω + α
− 2α

iω + α
(93)

=
iω − α
iω + α

(94)

= −α− iω
α + iω

(95)

|H(ω)| = |iω − α|
|iω + α|

(96)

=
α2 + ω2

α2 + ω2

(97)

= 1 (98)
∠H(ω) = ∠(−1) + ∠(α− iω) + ∠(α + iω) (99)

= π − 2arctan(ω/α) (100)
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Figure 2: Phase response with α = 0.5

(b) (10 points) Determine a reasonably simple expression for, and provide a well-
labeled plot of, the filter’s step response s(t). Recall that if the input is x(t) =
u(t), the corresponding output is y(t) = s(t) and is called the unit-step response.

s(t) = (h ∗ u)(t) (101)

=

∫ ∞
−∞

δ(τ)u(t− τ) dτ − 2α

∫ ∞
−∞

e−α(t−τ)u(t− τ)u(τ) dτ (102)

= u(t)− 2α

∫ ∞
0

e−α(t−τ)u(t− τ) dτ (103)

Let x , t− τ =⇒ dx = −dτ .

s(t) = u(t) + 2α

∫ x(∞)

x(0)

e−αxu(x) dx (104)

= u(t) + 2α

∫ −∞
t

e−αxu(x) dx (105)

= u(t)− 2α

∫ t

0

e−αxdx (106)

= u(t) + 2e−αx
∣∣∣t
0

(107)

14



= u(t) + 2
(
e−αt − e−α(0)

)
(108)

= u(t) + 2
(
e−αt − 1

)
u(t) (109)

= (2e−αt − 1)u(t) (110)

(c) (10 points) Show that the input-output behavior of the filter is described by the
linear, constant-coefficient differential equation

ẏ(t) + αy(t) = ẋ(t)− αx(t)

Solution 1 Let x(t) = eiωt. Our LCCDE then becomes:

iωH(ω)eiωt + αH(ω)eiωt = iωeiωt − αeiωt (111)

⇒ H(ω)eiωt(iω + α) = eiωt(iω − α) (112)

⇒ H(ω) =
(iω − α)
(iω + α)

(113)

Which matches the frequency response of the system

Solution 2 Let x(t) denote a generic input to the system.

y(t) = (h ∗ x) (t) (114)

=
(
δ(t)− 2αe−αtu(t)

)
∗ x(t) (115)

= x(t)− 2α

∫ ∞
−∞

e−ατu(τ)x(t− τ) dτ (116)

= x(t)− 2α

∫ ∞
0

e−ατu(t− τ) dτ (117)

Let u , t− τ =⇒ du = −dτ .

y(t) = x(t) + 2α

∫ u(∞)

u(0)

e−α(t−u)x(u) du (118)

= x(t) + 2αe−αt
∫ −∞
t

eαux(u) du (119)

= x(t)− 2αe−αt
∫ t

−∞
eαux(u) du (120)

dy(t)

dt
=

dx(t)

dt
− 2α

(
−αe−αt

∫ t

−∞
eαux(u) du+ e−αt

d

dt

∫ t

−∞
eαux(u) du

)
(121)

=
dx(t)

dt
+ 2α2e−αt

∫ t

−∞
eαux(u) du− 2αe−αteαtx(t)︸ ︷︷ ︸

2αx(t)

(122)
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dy(t)

dt
+ αy(t) =

dx(t)

dt
+ 2α2e−αt

∫ t

−∞
eαux(u) du− 2αx(t) (123)

+ αx(t)− 2α2e−αt
∫ t

−∞
eαux(u) du (124)

dy(t)

dt
+ αy(t) =

dx(t)

dt
− αx(t) (125)
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