UNIVERSITY OF CALIFORNIA, BERKELEY
College of Engineering
Department of Electrical Engineering and Computer Sciences
EE 105: Microelectronic Devices and Circuits

MIDTERM EXAMINATION \#1

Time allotted: 80 minutes

STUDENT ID\#:

INSTRUCTIONS:

1. SHOW YOUR WORK. (Make your methods clear to the grader!)
2. Clearly mark (underline or box) your answers.
3. Specify the units of your answer to receive full credit.
4. Unless stated in the problem, use the values of physical constants provided below.
5. You can use approximations within $\mathbf{2 0 \%}$ accuracy any time.
6. Calculator is allowed. (Cell phone is not allowed).
**** If you need more space for your answer, use the blank pages in the back. Clearly label which problem is your answer for ****

Commonly used constants and physical parameters:		
Electronic charge	q	$1.6 \times 10^{-19} \mathrm{C}$
Boltzmann's constant	k	$8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Thermal voltage at 300 K	$V_{\mathrm{T}}=k T / q$	0.026 V
Relative permittivity of Si	$\epsilon_{r, S i}$	12
Relative permittivity of SiO_{2}	$\epsilon_{r, o x}$	4
Vacuum permittivity	ϵ_{0}	$8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$

Points	Problem 1	25	
	Problem 2	25	
	Problem 3	25	
	Problem 4	25	
	Total	100	

1) A simple filter is shown below. Assume the Op Amp is ideal.

a) Derive the transfer function $H(j \omega)=v_{o} / v_{s}$.
b) Assume $C_{1}=100 \mathrm{pF}, C_{2}=10 \mathrm{pF}, R_{1}=10 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega$, draw the magnitude Bode plot. Clearly label the graph, including all the breakpoints (in magnitude and frequency).
c) Draw the phase Bode plot using the same numerical values. Clearly label the graph.
(a)

$$
\begin{align*}
& V_{0}=0-\frac{v_{s}}{Z_{1}} \cdot Z_{2} \Rightarrow \frac{V_{0}}{V_{s}}=-\frac{Z_{2}}{Z_{1}} \\
& Z_{1}=\frac{R_{1} \cdot \frac{1}{j \omega C_{1}}}{R_{1}+\frac{1}{j \omega C_{1}}}=\frac{R_{1}}{1+j \omega R_{1} C_{1}}, Z_{2}=\frac{R_{2}}{1+j \omega R_{2} C_{2}} \\
& H(j \omega)=-\frac{R_{2}}{R_{1}} \frac{1+j \omega R_{1} C_{1}}{1+j \omega R_{2} C_{2}} \tag{6}\\
& \text { zero }=\omega_{Z}=\frac{1}{R_{1} C_{1}}=\frac{1}{10 \mathrm{k} \Omega \cdot 100 \mathrm{pF}}=10^{6} \mathrm{rad} / \mathrm{s} \tag{2}\\
& \text { pole }=\omega_{p}=\frac{1}{R_{2} C_{2}}=\frac{1}{1 \mathrm{k} \Omega \cdot 10 \mathrm{pF}}=10^{8} \mathrm{rad} / \mathrm{s} \tag{2}
\end{align*}
$$

(b)

Bode Plot:

$$
\begin{align*}
& \text { Bode Plot: } \\
& \omega \rightarrow 0 . H(j \omega) \rightarrow-\frac{R_{2}}{R_{1}}=-\frac{1}{10}, \quad 20 \log |H(j \omega)| \rightarrow-20 \mathrm{~dB} \\
& \omega \rightarrow \infty \quad H(j \omega) \rightarrow-\frac{R_{2}}{R_{1}} \cdot \frac{R_{1} C_{1}}{R_{2} C_{2}}=-\frac{C_{1}}{C_{2}}=-\frac{100 \mathrm{pF}}{10 \mathrm{pF}}=-10 \tag{2}\\
& \\
& 20 \log |H(j \omega)| \rightarrow 20 \mathrm{~dB}
\end{align*}
$$

(C)

$$
\begin{align*}
& \omega \rightarrow 0, \quad \angle H(j \omega)=180^{\circ} \\
& \omega \rightarrow \infty, \angle H(j \omega)=180^{\circ} \\
& \omega=\omega_{2}=\frac{1}{R_{1} C_{1}}, H(j \omega) \approx-\frac{R_{2}}{R_{1}} \cdot \frac{1+j}{1}, \angle H(j \omega)=180^{\circ}+45^{\circ} \tag{1}\\
& \omega=10 \omega_{z} . H(j \omega) \approx-\frac{R_{2}}{R_{1}} \cdot \frac{j}{1}, \angle H(j \omega)=180^{\circ}+90^{\circ} \tag{1}\\
& \omega=\omega_{p} . \quad H(j \omega)=-\frac{R_{2}}{R_{1}} \cdot \frac{j}{1+j}, \angle H(j \omega)=180^{\circ}+90^{\circ}-45^{\circ} \tag{1}\\
& \omega=10 \omega_{p} . H(j \omega)=-\frac{R_{2}}{R_{1}} \frac{j}{j}, \quad \angle H(j \omega)=180^{\circ}
\end{align*}
$$

2) Consider the amplifier below, where $R_{1}=1 \mathrm{k} \Omega$ and $R_{1}=99 k \Omega$. The input waveform is shown on the right.

a) If the Op amp is ideal, draw the output waveform.
b) If the Op amp has a finite slew rate of $1 \mathrm{~V} / \mu s$, draw the output waveform. Clearly label the key features of the waveform. Justify the values with calculation.
c) Now consider the Op amp with a nonzero offset voltage. The open-loop transfer curve is shown on the right. Draw the output waveform with both non-zero offset voltage and finite slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$.
d) With the Op amp characteristics shown in c), if the open loop
 bandwidth of the Op amp is 1 kHz , what is the bandwidth of the amplifier?
(a) $v_{0}=v_{s}+\frac{v_{s}}{R_{1}} \cdot R_{2}=v_{s}\left(1+\frac{R_{2}}{R_{1}}\right)=100 v_{s}$

(b) $S R=$ VV/us $=$ max slope

shape

$$
5 \mathrm{~V} \text { (2) }
$$

(c) Offset voltage $=11 \mathrm{mV}$. Equivalent circuit $i s$

Page | 3
Input waveform "seen" by ideal Op Amp.

-1.1 V (2)
$3.9 v$ (2)
(d) Open-loop gain' from the trausfer wrve Th Part (c)

$$
\begin{align*}
& A_{0}=\frac{(20-(-20)) \mathrm{V}}{12 \mathrm{mV}-10 \mathrm{mV}}=\frac{40 \mathrm{~V}}{2 \mathrm{mV}}=20 \times 10^{3}=2 \times 10^{4} \tag{3}\\
& \omega_{b}=2 \pi \times 1 \mathrm{kHz}
\end{align*}
$$

For the closed. loop amplifier

$$
\begin{align*}
& A_{V}=1+\frac{R_{2}}{R_{1}}=100 \\
& \omega_{3 d B}=\frac{2 \times 10^{4} \times 2 \pi \times 1 \mathrm{kHz}}{10^{2}}=2 \pi \times 2 \times 10^{2} \times 10^{3}=2 \pi \times 200 \mathrm{kHz} \\
& f_{3 d B}=200 \mathrm{kHz} \tag{3}
\end{align*}
$$

3) Consider an ideal diode with the I-V curve shown below. It has a turn on voltage of 0.7 V and a reverse breakdown voltage of -5 V . For all circuits, $R=10 \mathrm{k} \Omega$ and $C=1 \mathrm{nF}$. Draw the output waveforms corresponding to the input waveform shown below. Clearly label your waveform with all critical features. (This question does not require extensive calculation. Just label your curve clearly. Mark critical voltages and times on the graph. You can use the space below for any calculation/justification needed.)

a)

Justifications/comments:
Justifications comments:
Half-wove rectifier but with diode breakdown

Justifications/comments:
Negative peak detector
Assume initially C is not charged.
Diode turned on when $v_{s}<-0.7 \mathrm{~V} . v_{0}=v_{s}+0.7 \mathrm{~V}$

$$
\begin{aligned}
& v_{0}=-10+0.7=-9.3 \mathrm{~V} \\
& \text { When } v_{S}>5 \mathrm{~V}, \Rightarrow \text { Breakdown. } V_{B R}=5 \mathrm{~V} .
\end{aligned}
$$

$$
v_{0}=v_{3}-5 \mathrm{~V}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
v_{s} & >5 \mathrm{~V} \Rightarrow \text { breakdown, } v_{0}=v_{s}-5 \mathrm{~V} \\
5 \mathrm{~V}>v_{s}>-0_{0} 7 \mathrm{~V}, \Rightarrow \text { OFF. } & v_{0}=0 \\
-v_{0}, 7>v_{s} & \Rightarrow \text { on }
\end{aligned}\right. \\
& \text { b) }
\end{aligned}
$$

c)

Justifications/comments:
fincionseommenss sing . Though there is a leakage path through R, voltage is determined by $V_{D}, V_{B R}$
d)

Output Voltage Waveform

Justifications/comments:
$V_{S}>0,7 \mathrm{~V}$, diode is $O N$ and $V_{0}=0.7 \mathrm{~V}$
$v_{s}<0.7 \mathrm{~V}$, diode is ofF, $v_{0}=v_{s}$
e)

Output Voltage Waveform

Justifications/comments:
$v_{s}<-0.7 \mathrm{~V}$. diode is $O \mathrm{~N}_{1} v_{0}=-0.7 \mathrm{~V}$
$v_{s}>-0.7 v$. diode is OFF $v_{0}=v_{s}$
f)

Output Voltage Waveform

Justifications/comments:

$$
v_{S}>\left|V_{B R}\right|+V_{D}=5+0.7=5.7 \mathrm{~V} .
$$

$D 1$ is in breakdown, $D 2$ is $O \mathrm{~N}, v_{0}=5.7 \mathrm{~V}$

$$
v_{s}<-\left(\left|V_{B R}\right|+V_{D}\right)=-5.7 V
$$

$D 1$ is ON, D2 in breakdown. $v_{0}=-5.7 V^{\text {Page } 16}$

$$
-5.7<v_{s}<507, v_{0}=v_{s}
$$

4) An asymmetric p-n junction has an n-doping of $N_{D}=10^{16} \mathrm{~cm}^{-3}$ and a p-doping of $N_{A}=$ $2.25 \times 10^{19} \mathrm{~cm}^{-3}$. The intrinsic carrier concentration is $n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$.
a) What is the builtin voltage of the p-n junction?
b) What is the total depletion width?
c) Is the depletion region mostly in the p-side or the n-side?
d) What is the peak electric field at zero bias?
e) When the diode is forward biased, what is the dominant current in the diode? Choose among electron diffusion, electron drift, hole diffusion, and hole drift currents. Consider their peak values if they are not uniform across the diode. Justify your answers.
f) If you use the diode as a variable capacitance, what is the capacitance tuning ratio (maximum capacitance / minimum capacitance) if the bias voltage is vary between 0 to 10 V ?
(a)

$$
\begin{align*}
V_{b i} & =60 \mathrm{mV} \cdot \log \left(\frac{N_{D} \cdot N_{A}}{n_{\tau}^{2}}\right)=60 \mathrm{mV} \cdot \log \cdot\left(\frac{10^{16} \cdot 2.25 \times 10^{19}}{2.25 \times 10^{20}}\right) \\
& =60 \mathrm{mV} \cdot 15=900 \mathrm{mV} \tag{4}
\end{align*}
$$

(b)

$$
\begin{aligned}
& W=\sqrt{\frac{2 \epsilon_{S}}{q} \cdot\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) \cdot V_{b i}} \\
& \epsilon_{S}=12 \times 8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \\
& q^{2}=1.6 \times 10^{-19} \mathrm{c}
\end{aligned}
$$

$$
\begin{equation*}
W=346 \mathrm{~km} \tag{4}
\end{equation*}
$$

(C)

$$
\begin{aligned}
& W=346 \text { nm } \\
& x_{n}=\text { depletion width on } n \text { "side } \\
& x_{p} \quad " \quad \text { "side } \\
& x_{n} \cdot N_{D}=x_{p} \cdot N_{A} \\
& \text { Since } N_{A} \gg N_{D} \Rightarrow x_{n} \gg x_{p} \\
& \text { Depletion region mainly on } n \text {-side }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& E_{\max }=\frac{q N_{d} \cdot x_{n}}{G_{S}} \\
& x_{n}=W \cdot \frac{N_{A}}{N_{A}+N_{D}} \approx \mathrm{~W} \\
& E_{\max }=5.2 \times 10^{4} \frac{\mathrm{~V}}{\mathrm{~cm}} \oplus
\end{aligned}
$$

(e)

At forward bias. diffusion currents dominate, since p-doping is higher, hole diffusion cur is the dominant term.

$$
\begin{aligned}
& J_{p, d i f f}=q D_{p} \frac{d P}{d x}=q D_{p} \cdot \frac{\Delta P}{L_{p}}=q D_{p} \cdot \frac{n_{\tau}^{2}}{N_{D}} \cdot e^{\frac{V}{H}} \cdot \frac{1}{L_{p}} \\
& J_{n \cdot d i f f}=q D_{n} \cdot \frac{n_{2}^{2}}{N_{A}} e^{\frac{V}{V_{T}}} \cdot \frac{1}{L_{n}}
\end{aligned}
$$

Since $N_{A} \gg N_{D}$. $J_{p, d i d f f} \gg J_{n, d i f f}$
(f) Max capacitance at $V=0$

$$
\begin{align*}
& c_{\text {max }}=\frac{\epsilon A}{W}=c_{0} \\
& c_{\text {min }}=\frac{\epsilon A}{W(V=10 V)}=\frac{c_{0}}{\sqrt{1+\frac{10}{V_{b \tau}}}} \\
& \frac{c_{\text {max }}}{c_{\text {min }}}=\sqrt{1+\frac{10}{V_{b \tau}}}=\sqrt{1+\frac{10}{0.9}}=3.5 \tag{4}
\end{align*}
$$

