ME 132, Fall 2015, Quiz \# 1

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	NAME
24	16	12	30	18	

Decent plot question from Spring 2012 Final. A couple of boring, but OK problems from Spring 14 final.

Rules:

1. 1 sheet of notes allowed, 8.5×11 inches. Both sides can be used.
2. Calculator is allowed. Keep it in plain view on the desk next to you.
3. No laptops, phones, headphones, pads, tablets, or any other such device may be out. If such a device is seen after $1: 10 \mathrm{PM}$, your test will be confiscated, and you will get a 0 for the exam.
4. Sit with at least one open space between every student
5. The exam ends promptly at $2: 00 \mathrm{PM}$.
6. Stop working, and turn in exams when notified.

For complex numbers N and D

$$
|N D|=|N| \cdot|D|, \quad \angle(N D)=\angle N+\angle D
$$

Furthermore, if $D \neq 0$,

$$
\angle \frac{1}{D}=-\angle D .
$$

If D is real, and $D>0$, then $\angle D=0$.

1. Consider the delay-differential equation

$$
\dot{x}(t)=A_{1} x(t)+A_{2} x(t-T)
$$

where A_{1}, A_{2} and T are real-valued constants. $T \geq 0$ is called the "delay." Depending on the values, there are 3 cases:

- The system is unstable for $T=0$; or
- The system is stable for all $T \geq 0$; or
- The system is stable for $T=0$, but unstable for some positive value of T. In this case, we are interested in the smallest $T>0$ for which instability occurs, and the frequency of the nondecaying oscillation that occurs at this critical value of delay.

Fill in the table below. In each row, please mark/check one of the first three columns (from the three cases above). If you check the 3rd column, then include numerical values in the 4 th and 5 th columns associated with the instability. Show work below.

	unstable at $T=0$	stable for all $T \geq 0$	stable at $T \quad$ 0, but unstable at some finite $T>0$	frequency at which instability occurs	smallest T at which instability occurs
$A_{1}=-2$,					
$A_{2}=3$					

2. A stable first-order system has

- a time-constant of 1 ;
- a steady-state gain of 1.5 ; and
- an instantaneous gain of -0.5 .
(a) Sketch the approximate response of the system (starting from 0-initial condition) to the input shown. Remember that the steady-state gain is not equal to 1 .

(b) Find values a, b, c, d such that system

$$
\begin{aligned}
\dot{x}(t) & =a x(t)+b u(t) \\
y(t) & =c x(t)+d u(t)
\end{aligned}
$$

has the specified properties (ie., time-constant, steady-state gain, and instantaneous gain) as given above. Hint: Correct answer is not unique - different combinations of (a, b, c, d) all combine to achieve these 3 specified properties.
3. (a) Define the complex number $g=\frac{5}{j 4+3}$.
i. Find the value of $\boldsymbol{\operatorname { R e }}(g)$
ii. Find the value of $\boldsymbol{\operatorname { I m }}(g)$
iii. Find the value of $|g|$
iv. Find the value of $\angle g$
(b) Sketch the final output (in the axes) of the Matlab code

```
uH = @(z) sin(4*z);
fH = @(t,x) -3*x + 5*uH(t);
[tSol, xSol] = ode45(fH,[0 100],-6);
plot(tSol, uH(tSol),'--', tSol, xSol); % input=dashed; solution=solid
xlim((2*pi/4)*[20 21]); % resets horizontal limits
```


4. A process, with input u, disturbance d and output y is governed by

$$
\dot{x}(t)=2 x(t)+d(t)+3 u(t), \quad y(t)=x(t)
$$

(a) Is the process stable?
(b) Suppose $x(0)=1$, and $u(t)=d(t) \equiv 0$ for all $t \geq 0$. What is the solution $x(t)$ for $t \geq 0$.
(c) Consider a proportional-control strategy, $u(t)=K_{1} r(t)+K_{2}[r(t)-y(t)]$. Determine the closed-loop differential equation relating the variables (x, r, d).
(d) For what values of K_{1} and K_{2} is the closed-loop system stable?
(e) As a function of K_{2}, what is the steady-state gain from $d \rightarrow y$ in the closed-loop system?
(f) As a function of K_{1} and K_{2}, what is the steady-state gain from $r \rightarrow y$ in the closed-loop system?
(g) Choose K_{1} and K_{2} so that the steady-state gain from $r \rightarrow y$ equals 1 , and the steady-state gain from $d \rightarrow y$ equals 0.1.
(h) With those gains chosen, sketch (try to be accurate) the two responses $y(t)$ and $u(t)$ for the following situation:

$$
x(0)=0, \quad r(t)=\left\{\begin{array}{ll}
0 & \text { for } 0 \leq t \leq 1 \\
1 & \text { for } 1<t
\end{array}, \quad d(t)= \begin{cases}0 & \text { for } 0 \leq t \leq 2 \\
1 & \text { for } 2<t\end{cases}\right.
$$

5. Consider our standard feedback interconnection, consisting of a 1st-order linear controller and proportional plant described by

$$
\begin{aligned}
& \text { controller : } \quad \begin{array}{l}
\dot{x}(t)=A x(t)+B_{1} r(t)+B_{2} y_{m}(t) \\
u(t)=C x(t)+D_{1} r(t)
\end{array} \\
& \text { plant : } \quad y(t)=\alpha u(t)+\beta d(t)
\end{aligned}
$$

The measurement equation is $y_{m}(t)=y(t)+n(t)$.
(a) Under what conditions (on the parameters $A, B_{1}, \ldots, D_{1}, \alpha, \beta$) is the closed-loop system stable? Carefully justify your answer.
(b) Is it possible that the controller, as a system by itself, is unstable, but the closedloop system is stable. If your answer is "No", please give a careful explanation. If your answer is "Yes", please give a concrete example.
(c) Suppose $\alpha=\beta=1$. Design the controller parameters so that

- the closed-loop is stable, with specified time-constant, $\tau_{\text {desired }}=0.2$.
- The steady-state gain from $r \rightarrow y$ is 1 , even if α, β change by modest amounts (but do not change sign) after the controller has been designed and implemented?
- The steady-state gain from $d \rightarrow y$ is 0 , even if α, β change by modest amounts (but do not change sign) after the controller has been designed and implemented?

Show your work, and clearly mark your answers.
(d) In the design above, the two steady-state gains $(r \rightarrow y$ and $d \rightarrow y)$ are completely insensitive to modest changes in α and β. What are some important closed-loop properties that do change if α and β vary?

