
EE 120: Signals & Systems
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Midterm Exam #2
April 11, 2017, 2:10-3:55pm

Instructions:

• There are four questions on this midterm, and one extra credit question. Answer each
question in the space provided, and clearly label the parts of your answer. You can
use the additional blank pages at the end for scratch paper if necessary. Do NOT write
answers on the back of any sheet or in the additional blank pages. Any such
writing will NOT be graded.

• Each problem is worth 20 points, and you may solve the problems in any order. The extra
credit problem is worth 5 points.

• Show all work. If you are asked to prove something specific, you must give a derivation and
not quote a fact from your notes sheet. Otherwise, you may freely use facts and properties
derived in class; just be clear about what you are doing!

• None of the questions requires a very long answer, so avoid writing too much! Unclear or
long-winded solutions may be penalized.

• You may use one double-sided sheet of notes. No calculators are allowed (or needed).

Your Name: Solutions

Your Student ID:

Name of Student on Your Left:

Name of Student on Your Right:

For official use – do not write below this line!
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Problem 1. Consider the system shown in Figure 2 below, which is intended for discrete-time
processing of a continuous-time signal.

Figure 1: System.

The discrete-time LTI system in the above figure is characterized by the difference
equation

y[n] =
1

4
y[n− 2] + x[n]− 1

2
x[n− 1].

The input x(t) is bandlimited to the interval |ω| < B rad/sec. The ideal ADC samples
the input with the sampling interval Ts = 0.25 sec. The ideal DAC also assumes that
the sampling interval is Ts.

a) What is the Nyquist rate in Hz? For what values of B will aliasing be avoided?

Solution We have that ωmax = B. Therefore, fmax = B
2π Hz and the Nyquist rate is 2fmax = B

π
Hz. We are given that Ts = 0.25 sec, which means that fs = 4 Hz. To avoid aliasing,
we need

fs = 4 >
B

π
= 2fmax ⇒ B < 4π.

b) Find the frequency response of the discrete-time LTI system that takes input x[n] to
output y[n]. What kind of filter (low-pass, high-pass, or band-pass) best describes
this system?

Solution From the difference equation, we have

H(ejω) =
1− 1

2e
−jω

1− 1
4e
−j2ω =

1

1 + 1
2e
−jω .

Plugging in different values of ω, we see that the discrete-time LTI system charac-
terizes a high-pass filter.

c) Assume that B is chosen such that no aliasing occurs. What is the effective fre-
quency response, i.e., the frequency response from the input x(t) to the output y(t),
of the entire system shown in Figure 2?

Solution Observe that the sampling rate is above the Nyquist rate. Therefore, the effective
frequency response of the system is

Heff(jω) =


1

1+ 1
2
e−jωTs

= 1

1+ 1
2
e−j

ω
4
, if |ω| < 4π

0, otherwise
.
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d) If we have the input x(t) = 2 cos(3π/2t), then the output will be of the form
y(t) = A cos(ω0t+ θ). Find the values of A and ω0 (assume the ideal ADC does not
contain an anti-aliasing filter).

Solution Observe that no aliasing occurs. We have

x(t) = 2 cos(
3π

2
t) = ej

3π
2
t + e−j

3π
2
t,

which implies

y(t) = Heff(j
3π

2
)ej

3π
2
t +Heff(−j 3π

2
)e−j

3π
2
t.

Therefore,

A =

∣∣∣∣∣ 1

1 + 1
2e
−j 3π

8

∣∣∣∣∣ and ω0 =
3π

2
.
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Problem 2. Consider the following RLC circuit:

The differential equation relating voltage (V) to the current (I) is given by:

d2

dt2
I(t) +

R

L

d

dt
I(t) +

1

LC
I(t) =

d

dt
V (t).

Assume we denote the input to the system as x(t) = V (t) and the output of the system
as y(t) = I(t). Given that R

L = 5 and 1
LC = 4, we can rewrite the differential equation

as
d2

dt2
y(t) + 5

d

dt
y(t) + 4y(t) =

d

dt
x(t).

a) Find the transfer function of this system P (s) and identify the ROC (note that real
circuits are always causal systems).

Solution
P (s) =

s

s2 + 5s+ 4
=

s

(s+ 4)(s+ 1)
<(s) > −1

b) Find the impulse response. Is the system stable? Justify your answers.

Solution

P (s) =
s

(s+ 4)(s+ 1)
=

4
3

s+ 4
+

−1
3

s+ 1
<(s) > −1 =⇒ p(t) = (

4

3
e−4t− 1

3
e−t)u(t)

The system is stable since ROC contains s=0 axis.

c) Consider the following feedback diagram:

x(t) y(t)

What is the transfer function of the overall feedback system in terms of C(s), P (s)
and H(s)?
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Solution

G(s) =
C(s)P (s)

1 + C(s)P (s)H(s)

d) For the feedback system in part (c), suppose C(s) = 2, P (s) is as in part (a), and
H(s) = 7

4 . What is the impulse response of the overall system? Is the system
stable?

Solution

G(s) =
C(s)P (s)

1 + C(s)P (s)H(s)
=

2s
s2+5s+4

1 +
2( 7

4
)s

s2+5s+4

=
2s

s2 + 17
2 s+ 4

=
2s

(s+ 8)(s+ 1
2)

For the ROC s > −1
2 , the system is stable and causal.

e) For the feedback system in part (c), suppose C(s) = 2, P (s) is as in part (a), and
H(s) = −9

2 . Is the resulting system stable?

Solution

G(s) =
C(s)P (s)

1 + C(s)P (s)H(s)
=

2s
s2+5s+4

1 +
2(−9

2
)s

s2+5s+4

=
2s

s2 − 4s+ 4
=

2s

(s− 2)2

The system is not stable since it has two positive roots at s = 2.
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Problem 3. A non-ideal sampling operation obtains a discrete-time signal xd[n] from a continuous-
time signal x(t) according to

xd[n] =

∫ nT+T/2

nT−T/2
x(t)dt.

a) Show that this can be written as ideal sampling of a filtered signal y(t) = x(t)∗h(t),
that is, xd[n] = y(nT ). Find h(t).

Solution

y(t) =

∫ t+T
2

t−T
2

x(τ)dτ = x(t) ∗ (u(t+
T

2
)− u(t− T

2
))

therefore h(t) = u(t+ T
2 )− u(t− T

2 ).

Note that H(jω) =
2 sin(ω T

2
)

ω is not band-limited.

b) Express the DTFT of xd[n] in terms of X(jω), H(jω) and T .

Solution
Y (jω) = X(jω)H(jω)

xd[n] is the sampled version of y(t), therefore:

Xd(e
jΩ)|Ω=2π ω

ωs
=

1

T

+∞∑
k=−∞

Y (j(ω − kωs)) =
1

T

+∞∑
k=−∞

X(j(ω − kωs))H(j(ω − kωs))

where ωs = 2π
T .

c) What is the largest B, such that if x(t) is bandlimited to the frequency range
|ω| < B, the signal x(t) can be recovered from its samples xd[n]? Is this the same
or different from the Nyquist rate?

Solution

|ω| < (
1

2
)
2π

T
=⇒ B =

π

T
This is equal to the Nyquist rate.

d) Assume that x(t) is bandlimited to the frequency range |ω| < 3π/(4T ). Determine
the frequency response of a discrete-time system g[n] that will correct the distortion
in xd[n] introduced by the nonideal sampling.

Solution

G(ejΩ) =
1

H(ejΩ)

Since 3π
4T < π

T , there is no aliasing. Therefore:

G(ejΩ)|Ω=2π ω
ωs

=
1

H(jω)
=

ω

2 sin(ωT2 )
|ω| < ωs

2
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Problem 4. A causal LTI system with rational transfer function H(s) has poles at s = −1± j0.5,
and zeros at s = ±j1.5.

a) Plot the pole-zero diagram for this system and shade the ROC. Is the system stable?

Solution The system is stable because the ROC contains the imaginary axis in the s-plane.

Figure 2: Pole-Zero Diagram and ROC.

b) If the constant DC signal x(t) = 1 is input into the system, then it is observed that
the signal y(t) = −1 is output. Is this enough information to determine H(s)? If
so, write an explicit expression for H(s).

Solution Yes, this is enough information to determine H(s). We have

H(s) = A
(s+ j1.5)(s− j1.5)

(s+ 1 + j0.5)(s+ 1− j0.5)
.

We know that

H(0) = A
−1.52

1.25
= −1 ⇒ A = −5

9
.

∴ H(s) = −5

9

(s+ j1.5)(s− j1.5)

(s+ 1 + j0.5)(s+ 1− j0.5)
.

c) What is the output y(t) of this system in response to the input x(t) = 4 + cos(t/2 +
π/3)?

Solution We have

x(t) = 4 +
1

2
ej

π
3 ej

t
2 +

1

2
e−j

π
3 e−j

t
2 .

Therefore,

y(t) = −4 +H(j/2)
ej

π
3

2
ej

t
2 +H(−j/2)

e−j
π
3

2
e−j

t
2 .
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d) Write a differential equation relating y(t) and x(t) that is consistent with your
expression for H(s) in part (b).

Solution Simplifying H(s) in part (b), we obtain

H(s) =
Y (s)

X(s)
= −5

9

s2 + 9
4

s2 + 2s+ 5
4

.

∴ (9s2 + 18s+
45

4
)Y (s) = (−5s2 − 45

4
)X(s),

⇒ 36
d2y(t)

dt2
+ 72

dy(t)

dt
+ 45y(t) = −20

d2x(t)

dt2
− 45x(t).

e) (Unrelated to previous parts) Solve the following differential equation, assuming
initial conditions y(0−) = y′(0−) = 1,

y′′(t)− 3y′(t) + 2y(t) = 0.

Solution Taking the unilateral Laplace transform, we obtain

s2Y (s)− sy(0−)− y′(0−)− 3(sY (s)− y(0−)) + 2Y (s) = 0.

∴ (s2 − 3s+ 2)Y (s) = s− 2,

Y (s) =
s− 2

s2 − 3s+ 2
=

s− 2

(s− 1)(s− 2)
=

1

s− 1
.

Therefore,
y(t) = etu(t).
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Problem 5. (5-points Extra Credit) Suppose the human eye samples at a rate of 60 Hz. You observe
that the wheels on the car driving next to you appear to be standing perfectly still. If
you are driving 65mph (≈29m/s), how fast is the car next to you traveling? (1 m/s ≈
2.2 mph).

Assume the wheels on the car next to you have a circumference of 1.5m, and have 6
spokes (i.e., they look identical regardless of whether they are rotated 0◦, 60◦, 120◦,
180◦, 240◦, or 300◦).

Solution In 1
60 of a second, I need π

3k rad of rotation, where k is a positive integer. In other
words, we need an angular frequency that is

π
3
1
60

k = 20πk rad/sec.

20πk rad/sec is equivalent to 10k revolutions per second. With a wheel circumference
of 1.5 m, this means that we need 15k m/s. The only k that makes sense in our problem
is k = 2, so we have that the car next to us is traveling at 30 m/s (approximately 66
mph or 67.2 mph).
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