Instructions:

- There are fifteen questions on this exam, for a grand total of 83 points. Answer each question in the space provided. You can use the additional blank pages at the end for scratch paper if necessary.
- The first 10 questions are short answer, they do not require you to show your work. The last 5 questions are longer format; please show all work for these questions. If you are asked to prove something specific, you must give a derivation and not quote a fact from your notes sheet. Otherwise, you may freely use facts and properties derived in class; just be clear about what you are doing!
- We may use Gradescope for grading. Do NOT write answers on the back of any sheet or in the additional blank pages, it will NOT be scanned or graded.
- Problems are worth a variable number of points, and you may solve the problems in any order.
- None of the questions requires a very long answer, so avoid writing too much! Unclear or long-winded solutions may be penalized.
- You may use two double-sided sheets of notes. No calculators are allowed (or needed).

Your Name:
Your Student ID:

Name of Student on Your Left:

Name of Student on Your Right:

For official use - do not write below this line!

Problem 1. (9 points) For each entry in the box, put a 'Yes' or a 'No'. A correct answer gets 1 point, a wrong or blank gets 0 points. A system is described by how it transforms the (discrete or continuous time) input $x(\cdot)$ to the (discrete or continuous time) output $y(\cdot)$. No justification is needed for your answers.

System Description	Linear?	Time-Invariant?	Causal?
$y(t)=x(-t)$	\mathbf{Y}	\mathbf{N}	\mathbf{N}
$y(t)=t^{2} x(t-2)$	\mathbf{Y}	\mathbf{N}	\mathbf{Y}
$y[n]=\|x[n]\|$	N	Y	Y

Problem 2. (2 points) Suppose the input to a continuous time LTI system is $u(t)$, and the observed output is $y(t)$. What is the impulse response $h(t)$ for the system in terms of $y(t)$?

$$
\frac{d}{d t} y(t)
$$

Problem 3. (2 points) A periodic signal $x(t)$ is input to a continuous time LTI system. Assuming the output is non-constant, is it necessarily periodic?
Yes

Problem 4. (3 points) Suppose we sample a sinusoid $x(t)=\sin (50 \pi t)$ at rate $\omega_{s} \mathrm{rad} \times$ samples $/$ second. Upon passing the samples through an ideal interpolator, the reconstructed continuous time signal is $x_{r}(t)=\sin (10 \pi t)$. What is ω_{s} ? If there is more than one possible answer, give the smallest one.

$$
\omega_{s}=40 \pi
$$

Problem 5. (2 points) A k-point moving average filter has impulse response $h_{k}[n]=1 / k$ for $0 \leq$ $n \leq k-1$, and $h_{k}[n]=0$ otherwise. Does cascading two 6 -point moving average filters result in a 12 -point moving average?
No

Problem 6. (1 point) Suppose a discrete time periodic signal is input to a stable LTI system. What mathematical tool is most suitable for analysis in this situation: DTFT, DTFS, CTFT, CTFS, Laplace transform, or z-transform?
DTFS

Problem 7. (3 points) Consider the signal

$$
x[n]= \begin{cases}(-1)^{n} & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Sketch a plot of the convolution $x[n] * x[n-1]$. Label your axes clearly.

Problem 8. (4 points) Let $x(t)$ be a bandlimited signal with spectrum $X(j \omega)=0$ for $|\omega| \geq \omega_{0}$. Determine the Nyquist rate for each of the following signals.
a) $y_{1}(t)=3 x^{\prime}(t) .2 \omega_{0}$
b) $y_{2}(t)=(x(t))^{4}$. $4 \cdot 2 \omega_{0}=8 \omega_{0}$.

Problem 9. (2 points) Suppose a system has output $y(t)=2 \sin (\pi t)$ when the input is $x(t)=$ $\sin (\pi t)$. Furthermore, if the input is $x(t)=\sin (\pi t)+\cos (2 \pi t)$, the output if the system is $y(t)=2 \sin (\pi t)+2 \cos (2 \pi t)$. Based on this information, can you conclude that this a linear system?
No.

Problem 10. (3 points) Consider the signal

$$
x(t)=\sum_{k=-\infty}^{\infty}(-1)^{k} \frac{\sin (\pi(t-k))}{\pi(t-k)} .
$$

What is a simple expression for $x(t)$?
Hint: Do not try to do this from scratch. Think of where you have seen a similar sum before. You shouldn't have to do any math to find the answer.

$$
x(t)=\cos (\pi t)
$$

Problem 11. (11 points) Consider the following continuous time signal

$$
x(t)=2 \sin (200 \pi t) \cdot \cos (800 \pi t)
$$

a) What is the period of $x(t)$?

$$
\begin{aligned}
x(t) & =-\sin (600 \pi t)+\sin (1000 \pi t) \\
& \Rightarrow \omega_{0}=200 \pi \quad \Rightarrow T=1 / 100 s .
\end{aligned}
$$

b) Express $x(t)$ in terms of its Fourier Series.

$$
\begin{array}{ll}
a_{3}=j / 2, & a_{-3}=-j / 2 \\
a_{5}=-j / 2, & a_{-5}=j / 2
\end{array}
$$

c) Suppose now that you observe

$$
y(t)=x(t)+z(t)
$$

where $z(t)=20 \sin (400 \pi t)$. You will attempt to reconstruct $x(t)$ from $y(t)$ via an LTI system $y(t) \mapsto \hat{x}(t)$ with system equation

$$
\hat{x}(t)=\frac{1}{2} y(t)-\frac{1}{2} y(t-\tau)
$$

where $\tau>0$ is a design parameter. What is the frequency response $H(j \omega)$ of this system, in terms of τ ?

$$
H(j \omega)=\frac{1}{2}\left(1-e^{-j \omega \tau}\right)
$$

d) Plot the gain $|H(j \omega)|^{2}$ of the system from part (c). Your tick marks on the axes will involve τ.

e) How should you pick τ so that $\hat{x}(t)=x(t)$? If there are multiple such τ 's, choose the smallest one.

$$
\begin{gathered}
\text { Need to choose } \tau \text { st. } \\
H(j 600 \pi)=H(j 1000 \pi)=1 \\
H(H 00 \pi)=0 \\
\text { piracy } \tau=1 / 200 \text { works. }
\end{gathered}
$$

Problem 12. (10 points) Consider the causal LTI system described by the difference equation

$$
y[n]+0.81 y[n-2]=x[n]+x[n-2] .
$$

a) Find the transfer function $H(z)$ for this system.

$$
H(z)=\frac{z^{2}+1}{z^{2}+0,81}
$$

b) Make a pole-zero plot for $H(z)$, indicate ROC, and sketch the corresponding ferequincy response.

c) Is this system stable?

d) Determine the system output $y[n]$ for the input

$$
\begin{array}{r}
x[n]=1+\sin (\pi n / 2) . \\
\nrightarrow[n]=\frac{2}{1.81}
\end{array}
$$

Problem 13. (11 points) Suppose two causal LTI systems with transfer functions $F(s)$ and $G(s)$ are connected as shown below.

a) What is the overall transfer function $H(s)$ for this system, in terms of $F(s)$ and $G(s)$?

$$
\frac{1+G(s)}{1-F(s)}
$$

b) Suppose $G(s)=3 / s$ and $F(s)=K s$. Make a pole-zero plot of this system (your plot will be in terms of K), and indicate the ROC.

c) Are there conditions on K for which the system is stable?

d) Determine the system impulse response $h(t)$.

$$
\begin{aligned}
H(s) & =\frac{3}{s}+\frac{1+3 k}{1-k s} \\
& =\frac{3}{s}-\frac{3+1 / k}{s-1 / k} \\
\Rightarrow h(t) & =3 u(t)-(3+1 / k) e^{-1 / k t} u(t)
\end{aligned}
$$

Problem 14. (10 points) Suppose an audio signal $x(t)$ is sampled at a sampling rate of $f_{s}=45 \mathrm{kHz}$. However, the device that will ultimately play back these samples assumes the audio signal was sampled at 18 kHz . You propose a system like that shown below. The boxes with $\uparrow 2$ and $\downarrow 5$ represent upsampling (i.e., zero-insertion) by a factor of 2 , and downsampling (i.e., sample removal) by a factor of 5 , respectively.

a) State the Sampling Theorem.

b) What is the purpose of Filter 1? Sketch what the ideal frequency response $H_{1}(j \omega)$ should look like for this filter.

c) Assuming the spectrum of $x(t)$ is as shown below (note the units are in Hz for your convenience), sketch the spectrums for $y(t), y_{1}[n]$, and $y_{2}[n]$ on the axes supplied. Assume Filter 1 is as you specified in part (b). Make sure to label the axes.

d) Filter 2 is used to prevent aliasing in the downsampling block. Sketch what the ideal frequency response $H_{2}\left(e^{j \omega}\right)$ should look like for this filter.

e) Sketch the spectrums for $y_{3}[n]$ and $y_{4}[n]$ on the axes supplied. Assume Filter 2 is as you specified in part (d). Make sure to label the axes.

Problem 15. (10 points) In this problem, we establish a Parseval-like theorem for sampled signals.
a) Define $\operatorname{sinc}(x):=\frac{\sin (\pi x)}{\pi x}$. For m, n integers, establish the following identity:

$$
\int_{-\infty}^{\infty} \operatorname{sinc}(W t-m) \operatorname{sinc}(W t-n) d t= \begin{cases}0 & m \neq n \\ \frac{1}{W} & m=n\end{cases}
$$

Passeval:

$$
\int x(t) y(t) d t=\frac{1}{2 \pi} \int X(j v) Y^{t}(j v) d v
$$

$$
\begin{aligned}
& \frac{\sin (\pi \omega t)}{\pi \omega t} \longleftrightarrow \begin{cases}1 / \omega & |\omega|<\pi \omega \\
0 & |\omega|>\pi \omega\end{cases} \\
& \Rightarrow \sin c(W t-m) \longleftrightarrow \frac{1}{W} e^{-j \omega m / \omega} \mathcal{Y}\{|\omega|<\pi \omega\} \\
& \pi W \\
& \Rightarrow \text { integral }=\frac{1}{2 \pi \omega^{2}} \int_{-\pi W}^{e^{j \omega(n-m) / w}} \underbrace{e^{j \omega}} \\
& S=\left\{\begin{array}{cl}
2 \pi W & \text { if } n=m \\
0 & \text { if } n \neq m
\end{array}\right.
\end{aligned}
$$

b) A signal is bandlimited to $\omega_{0} \mathrm{rad} / \mathrm{s}$, and is sampled at $\omega_{s}>2 \omega_{0}$. Define $T=2 \pi / \omega_{s}$ and use the result of part (a) to show that

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=T \sum_{n=-\infty}^{\infty}|x(n T)|^{2}
$$

Hint: Use the fact that $x(t)$ is bandlimited to write $x(t)$ as a sine interpolation of the samples $x(n T), n \in \mathbb{Z}$.

$$
\begin{aligned}
& \text { define } f_{s}=\frac{1}{T}=\operatorname{\omega s} / 2 \pi \\
& x(t)=\sum x(n T) \sin c\left(f_{s} t-n\right) \quad l_{y} \text { since intepethen } \\
& \Rightarrow|x(t)|^{2}=\sum_{m} \sum_{n} x(n T) x(n T) \operatorname{sinc}\left(f_{5} t-n\right) \sin c\left(f_{5} t-m\right) \\
& \text { intercut note ales, cross-tems camel by, }
\end{aligned}
$$

So

$$
\int|x(t)|^{2} d t=\underbrace{f_{S}}_{\|} \sum_{n \in \mathbb{Z}}|x(n T)|^{2}
$$

$$
1 / T
$$

(End of Exam)
(this page left intentionally blank)
(this page left intentionally blank)

