Math 1B, Second Midterm Examination

2:00-3:00pm, N.Reshetikhin, October 24, 2016
Student's Name:
GSI's name:

Student's i.d. number:

Problem	1	2	3	4	5	Total
Points	20	20	20	20	20	100
Grade						

1.(20 points) For each of the following series determine whether the series is divergent, conditionally convergent, or absolutely convergent. Indicate which tests you used.
a) (10 points)

$$
\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)
$$

b) (10 points)

$$
\sum_{n=1}^{\infty} \frac{n \sin (n)}{\left(n^{3}+1\right)}
$$

2.(20 points)These are True-False questions. If the answer is True, you should explain why (concisely). If the answer is False, you should give a counterexample.
a) (5 points) If the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely and $\sum_{n=1}^{\infty} b_{n}$ converges conditionally, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
b) (5 points) If the sequence $\left\{b_{n}\right\}$ is convergent and the sequence $\left\{a_{n}\right\}$ is monotonically decreasing, then the sequence $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ converges.
c) (5 points) If the series $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent and the sequence $\left\{b_{n}\right\}$ is bounded and nonnegative, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
d) (5 points) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then the series $\sum_{n=1}^{\infty} a_{n}^{4}$ converges.
3.(20 points)Find the first three non-zero terms of the the Taylor series about $x=0$ for

$$
f(x)=\frac{e^{x}}{(1+x)}
$$

4.(20 points)Find the interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{n+5}
$$

5.(20 points)Answer True or False. You do not have to show your work.
a) (4 points) If $\sum_{n=1}^{\infty} a_{n}(x-2)^{n}$ converges at $x=0$, then it converges at $x=3$.
b) (4 points) If a series $\sum_{n=1}^{\infty} a_{n} 2^{n}$ diverges, then $\sum_{n=1} a_{n}(-2)^{n}$ diverges.
c) (4 points) If the series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally, then the radius of convergence of $\sum_{n=1}^{\infty} a_{n}(x-5)^{n}$ is 1 .
d) (4 points) It is possible that the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ has infinite radius of convergence, but the series $\sum_{n=1}^{\infty} a_{n}^{2} x^{n}$ has finite radius of convergence.
e) (4 points) If the series $\sum_{n=1}^{\infty} a_{n}$ absolutely converges by the root test, then the radius of convergence of $\sum_{n=1}^{\infty} a_{n}^{2} x^{n}$ is at least 1 .

