Math 1B, Final Examination N.Reshetikhin, May 15, 2015

Student's Name:

GSI's name:

Student's i.d. number:

 $1.15 \ pnts$ Evaluate the integral

2.15 pnts Compute the integral

$$\int \frac{4dx}{(x-1)(x^2-1)}$$

 $3.15\ pnts$ Say whether each improper integral is convergent or divergent. Do not show your work. Each correct answer is worth 3 pnts and each wrong answer is worth 0 pnts.

1.
$$\int_{1}^{\infty} \frac{dx}{x \ln x} .$$

2.
$$\int_{1}^{\infty} \frac{1}{x(\ln x)^2} dx.$$

3.
$$\int_{0}^{\infty} \frac{1 - \cos x}{x^2} dx.$$

4.
$$\int_{0}^{\infty} \frac{\sin(x^2)}{x^2} dx.$$

5.
$$\int_{0}^{1} \frac{dx}{x\sqrt{1 - x}}.$$

4.15 pnts Find the radius and the interval of convergence of the power series

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n+5}} (x-2)^n$$

 $5.15 \ pnts$ State whether each of the following series is absolutely convergent, conditionally convergent, or divergent. You do not have to show your work. Each correct answer is worth 3 pnts and each wrong answer is worth 0 pnts.

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}.$$

2.
$$\sum_{n=1}^{\infty} \cos(\frac{\pi}{2} + \frac{1}{n^2}).$$

3.
$$\sum_{n=1}^{\infty} \frac{n \sin n}{n^3 + 1}.$$

4.
$$\sum_{n=1}^{\infty} \tan(\frac{1}{n}) \sin(\frac{\pi}{2} + \pi n).$$

5.
$$\sum_{n=1}^{\infty} n^2 \cos(\frac{\pi n}{2})$$

6.15 pnts These are True-False questions. If the answer is True, you should explain why (concisely). If the answer is False, you should give a counterexample. Each problem is worth 5 points if the answer is correct and 0 points if the answer is not correct.

- 1. If the series $\sum_{n=1}^{\infty} a_n$ converges and the series $\sum_{n=1}^{\infty} a_n^2$ diverges, then $\sum_{n=1}^{\infty} a_n$ converges conditionally.
- 2. If the series $\sum_{n=1}^{\infty} a_n$ converges, then the series $\sum_{n=1}^{\infty} (a_n + |a_n|)$ converges.
- 3. If the series $\sum_{n=1}^{\infty} a_n$ converges and the sequence $\{b_n\}_{n=1}^{\infty}$ converges as $n \to \infty$, and $b_n \neq 0$, then $\sum_{n=1}^{\infty} a_n b_n$ converges.

 $7.15 \ pnts$ For each statement indicate whether it is true or false. You do not have to show your work. Each correct answer is worth 3 pnts and each wrong answer is worth 0 pnts.

- If a series ∑_{n=1}[∞] (-1)ⁿa_n diverges and R is the radius of convergence of ∑_{n=0}[∞] a_n(x − 1)ⁿ, then R ≤ 2.
 If ∑_{n=1}[∞] c_n(x − 1)ⁿ converges at x = 3, then ∑_{n=1}[∞] c_n converges.
- 3. The radius of convergence of $\sum_{n=1}^{\infty} (1+5^n)x^n$ is greater than 4.
- 4. Even though the series $\sum_{n=1}^{\infty} c_n (x-1)^n$ converges at x = -1, the series $\sum_{n=1}^{\infty} c_n 2^n$ may diverge.
- 5. If the series $\sum_{n=1}^{\infty} c_n x^n$ converges absolutely for $|x| \le 2$ then the radius of convergence is 2.

 $8.15 \ pnts$ Find the general solution to the differential equation

$$yy' - y^2 x = x \; .$$

 $9.15 \ pnts$ Find the solution to the initial value problem

$$y'' + y = x^2 + e^x$$
, $y(0) = -\frac{3}{2}$, $y'(0) = \frac{1}{2}$.

 $10.15 \ pnts$ Find the solution to the initial value problem

 $y' + y \tan x = \sec x, \ y(0) = 0.$

11.15 pnts Match pictures to differential equations.

a.
$$\frac{dy}{dx} = y^3 - x^3$$

b.
$$\frac{dy}{dx} = \frac{y^2}{x^2}$$

c.
$$\frac{dy}{dx} = -x + y$$

d.
$$\frac{dy}{dx} = x^2 + y^2$$

e.
$$\frac{dy}{dx} = y^2 - x^2$$

12.15 pnts Find the power series solution to the initial value problem:

xy'' + xy = 0, y(0) = 1, y'(0) = 0.