1. The following equation applies to a plane wall of half thickness L:

Assume initial condition

| and the boundary conditions are

and
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a.  Re-write th above using non-dimensional length (x/L) and non-dimensional
temperatureéfgml non-dimensional time (the Fourier number).
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b. Non-dj ionalize the initial and boundary conditions to derive the Biot number.
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¢. Provide a detailed explanation of the physical significance of the Bi and Fo numbers

including an explanation of the significance of high vs. low values for the Bi and Fo
numbers,
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d. Show the transient temperature distribution
convection as shown in the figures below for

line indicates temperature at time t = 0 as Tiita-

in a plane wall symmetrically cooled by
Bi << 1, Bi = 1, and Bi >> 1. The horizontal

‘e. Show the steady state temperature distribution in a plane wall with one surface at T1 and
the other surface at T2 for Bi << 1, Bi=1, and Bi >> 1.
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2. Copper tubing is joined to the absorber of a flat-plate solar collector as shown. The aluminum alloy
absorber plate is 6 mm thick and well insulated on its bottom (k = 180 W/mK). The top surface of the
plate is separated from a transparent cover plate by an evacuated space. The tubes are spaced a distance
L 0f 0.20 m from each other, and water is circulated through the tubes to remove the collected energy.
The water may be assumed to be at a uniform temperature of 7,a., = 60 C.
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For parts a and b, assume g4 represents the net effect of solar radiation absorption by the absorber plate and the
temperature of the absorber plate directly above a tube to be equal to that of the water.

a. Under steady-stzate operating:conditions for which'the ne radiation heat flux to the surface is
9ra = 800 W/m®, what is the maximum temperature on the plate. g
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b.  What is the heat transfer rate per unit length of fube? Ta= 66°%¢= 17
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c. Assume the portion of the tube making contact between the water tube and the plate can be
represented by the finite difference surface shown in the figure below where points m-1, n and
m, n+1 are aluminum with thermal conductivity k. Assume the temperature of the plate and
the temperature of the water are no longer the same. Derive the corresponding finite
difference equation.
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d. Create a flux plot of this element showing isothermal lines, adiabats, and heat flux lines.
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1 3. Gold nanoparticles have numerous biological and medical applications. One
common application is photothermal therapy, in which gold nanoparticles are
deposited into cancerous tissue. Then, a laser whose energy is strongly absorbed

by the gold nanoparticles, but not by human tissue, is used to raise the
temperature of the gold nanoparticles and, consequently, the temperature of the
surrounding cancer cells. The goal is to heat the nanoparticles no higher than the
Tenreshora NECESSry to achieve cell death, to minimize damage to healthy tissue.

In this problem we will consider spherical gold nanoparticles deposited in a cancerous
tumor. We will consider several different scenarios, s lease read each part of this
problem carefully and refer to the associated figures.

¥ a) Consider a single nanoparticle of diameter d, which you can assume to be
thermally lumped. At time =0, the laser is turned on and the power ramps up
linearly such that the gold nanoparticles experience uniform volumetric
generation of ¢ = Mt, where M is a constant with units of [W/(m3—s)] or,
equivalently, [J/(m3-sz)]. The nanoparticle is initially ata temperature 7i. For the
timescales on which the laser heating occurs, the nanoparticle surface can be

| approximated as adiabatic. Set up, but do not yet solve, the governing differential
equation and the initial condition needed to solve for the nanoparticle temperature,
TNp,asaﬁmctionoftimer. //C oT . Q/V
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b) Now solve your equation from part (a) to find TNP._(f)- H;ow long will it take Ehe
nanoparticle to reach Tisreshord = 45 °C from an initial temperaturc of T;=137°C?

Take d = 100 nm, M =4X 10° W/(m’-s) and pc; =25 x 10° J/(;s-l().
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Lilztlfir:t:fe ;’f Thissue = 37 °C. The thermal resistance for the nanoparticle losing
e gnw uction to the tissue can be approximated as Ryp = 1/(2dhjssuc). Take
ltlssue = V.6 W/(m-K), Wha't 1s Tp S nanoseconds (1 nanosecond = 10 s) after the
aser 1s shut off? Once again, assume the nanoparticle to be thermally lumped.

1\'Tote: You may either set up
smp!y write down the ans
solution derived in your te

and solve a new differential equation, or you may
wer by replacing the convection resistance in the

(/RAY(pVc), where (1/ hd) is a thermal resistance and (p¥c) is a thermal
capacitance, _
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d) Consider a different scenario in which a constant laser power is used to maintain
Inp= Tireshold (i-€. § is constant and no longer time-dependent). The nanoparticle
loses heat via conduction to the tissue, as in part (¢). Although we technically
cannot apply the thermal resistor concept to the thermal resistance within the

d
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nanoparticle due to the volumetric energy generation, it turns out that in this case
we can still define an “effective” thermal resistor for the internal thermal
resistance of the nanoparticle, where Rinemal = 1/(2dkgo1).

Given kgl = 315 W/(m-K), is it valid to assume the nanoparticle is therm_ally
lumped in this scenario? Hint: Recall the most general definition of the Biot
number,
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Now consider gold nanoparticles with a smaller diameter of = 10 nm. Given that
the primary heat carriers in gold have a heat capacity of 1.9 x 10* J/(m’-K) and a
velocity of 1.4 x 10° m/s, will the thermal conductivity of these smaller gold
nanoparticles differ from the bulk value of kyo19 = 315 W/(mn-K)? If so, for the
scenario given in part (d), can these smaller nanoparticles still be considered
thermally lumped? Justify your answer with a calculation and a one-sentence

explanation.
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Given that the electrical conductivity of gold|is approximately o =4.1 x 10’ Q- /
m" at 300 K, which energy carriers carry most of the heat in gold?
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