
Problem 1

(a) The inner surface near the 4Q charge has a total charge −4Q distributed unevenly on
its surface. The inner sufrace near the −2Q charge has a total charge 2Q distributed
unevenly on its surface. Finally, the outer surface has a charge 2Q distributed evenly
on its surface.

(b) Outside the sphere, the electric field is that of a point charge located at the center of
the conducting sphere with charge q = 4Q− 2Q = 2Q. If we consider an infinitesimal
length of rod with charge dq located a distance x away from the center of the sphere,
the force on the segment is given by
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, we find that the total force on the rod is
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Problem 2

(a) Since the charge distribution has a high degree of symmetry, we use Gauss’ law to
determine the magnitude of the electric field. If we consider a cylinder of length l,
radius r′ and infinitesimal thickness dr′, then the amount of charge inside the cylinder,
and between r′ and r′ + dr′, is

dq = ρ(r′) · 2πlr′dr′ (4)

Therefore, the amount of charge that a cylindrical Gaussian surface of length l and
radius r contains is
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Thus, for r < a, the magnitude of the electric field is given by
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For r > a, we simply set r = a in our equation for charge and find
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(b) To calculate the electric potential, we use

∆V = −
∫
Edr (11)

and set V = 0 at r=0. For r < a, we get
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and for r > a we have
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To get V (0) = 0, we simply set V0 = 0. To determine r0, we have to ensure that V is
continuous at r = a. Thus we require
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r0 = ae−1/4 (15)

Problem 3

(a) We let the inner sphere have a charge Q and the outer sphere have a charge −Q. The
electric field in between the spheres is then
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then the potential difference between the spheres is
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Note that |∆V | is the negative of the above since r1 < r2. Then
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(b) Following the same procedure, for the cylindrical capacitor, we have
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so that
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Then the capacitance per unit length is
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Problem 4
We consider a spherical shell of radius r and thickness dr. The resistance of such a shell is
given by

dR = ρ
dl
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so the total resistance is given by
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Problem 5

(a) Capacitors 1 and 2 are in series, so we replace them by a capacitor with capacitance

Ca =
C1C2

C1 + C2
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C

2
(27)

The new capacitor Ca is in parallel with C3, so we replace the two with a capacitor

Cb = C3 + Ca =
3C

2
(28)

Finally, C4 and the new Cb are in series. The equivalent capacitance of the whole circuit
is then
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The charges on capacitors 4 and Cb is the charge on the capacitor Cd. Thus
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(b) We know that Q1 = Q2 = 10µF . We also have
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Since capacitor 3 is in parallel with 1 and 2, we have V3 = Va = 10V and

Q3 = C3V3 = 20µC (39)

Finally, Vb = 10V and Cb = 3µF , so

Q4 = Qb = VbCb = 30µC (40)
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Then the potential difference is

Vab = V4 + Vb = 6V + 10V = 16V (42)

Problem 6 ( pts.)

(a) We use the method of superposition to determine the electric field. We model the hole
in the sheet as an overlap of circular disks of charge with opposite sign. The magnitude
of the charge on each disk is given by Q = πσR2. Thus, the total electric field is the
sum of the electric field of an infinite sheet of charge and a disk of charge −Q. For the



disk, we first consider a ring of charge q. The electric field on the axis of the disk is
given by
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Where we are labelling the z axis as the axis running through the center of the ring.
To get the electric field of the disk, we break the disk into infinitesimal rings of charge
dq and radius r. Using the result for a ring, we have
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where we have used dq = σdA = σ2πrdr = Q
πR2 ·2πrdr and assumed that z > 0. Taking

the electric field of the uniform slab, we find the total electric field is
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(b) We now consider a position z such that R/z � 1. Then we expand
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Where we are keeping on the lowest order term. Then we see that
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We are considering a point very far away from the plane. At this distance, the hole
looks like a negative point charge and is the second term in the expansion. The first is
the contribution from the infinite plane

(c) Now we consider z/R� 1. A similar expansion yields
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As we continue to take z → 0, we see the electric field drops to zero. We can look at
this in two ways. If we model the hole as overlapping negative and positive charge,
then as we approach the plane the two electric fields cancel. On the other hand, if we
consider just the plane with a hole, if we sit at the center of the hole we see that the
sum of the electric field vectors from the charges that make up the plane sum to zero.


