Math 110 (Fall 2018) Midterm II (Monday October 29, 12:10-1:00)

1.

(1) (T) There exist invertible matrices E and F such that $E\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right) F=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

The two columns are scalar multiples of each other, so $\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right)$ has rank 1. Thus it can be transformed into $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ by elementary row/column operations (Theorem 3.6). Hence there exist E and F as above (representing elementary row and column operations, respectively).
(2) (F) Let $A \in M_{n \times n}(\mathbb{R})$. If $\operatorname{det}(-A)=\operatorname{det}(A)$ then A is not invertible.

If $n=2$ and $A=\mathrm{I}_{2}$ then $\operatorname{det}\left(-\mathrm{I}_{2}\right)=\operatorname{det}\left(\mathrm{I}_{2}\right)=1$ but I_{2} is invertible.
(3) (T) Let T be a linear operator on a finite-dimensional vector space V and W be a T-invariant subspace of V. If T is diagonalizable, then the characteristic polynomial of T_{W} splits.

Since T is diagonalizable, $\operatorname{ch}_{T}(t)$ splits. As $\mathrm{ch}_{T_{W}}(t)$ divides $\mathrm{ch}_{T}(t)$, we see that $\mathrm{ch}_{T_{W}}(t)$ must split as well.
(4) (F) Let T be a nonzero linear operator on a finite-dimensional vector space V. Let $v \in V$. Then the T-cyclic subspace generated by v is the same as the T-cyclic subspace generated by $T(v)$.

If $V=\mathbb{R}^{2}$ and $T(x, y)=y$ and $v=(1,0)$ then the T-cyclic subspace generated by v is \mathbb{R}^{2} but the T-cyclic subspace generated by $T(v)$ is $\{0\}$.
2. (16 pts) Let A be an $m \times n$ matrix and B an $n \times p$ matrix (with entries in F). Suppose $A B$ has rank m. Determine, with proof, the rank of A.

We know that the rank of a matrix is at most the number of its rows or columns, so in particular $\operatorname{rank}(A) \leq m$. Also the rank of a product of matrices is at most the rank of each individual matrix, so in particular $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$. Combining these facts with the fact that $\operatorname{rank}(A B)=m$, we have

$$
m=\operatorname{rank}(A B) \leq \operatorname{rank}(A) \leq m
$$

which implies $\operatorname{rank}(A)=m$.

Alternative proof:
Translating the statement of the problem from matrices to linear maps, we have

$$
L_{A}: F^{n} \rightarrow F^{m} \quad \text { and } \quad L_{B}: F^{p} \rightarrow F^{n} \quad \text { and so } \quad L_{A B}=L_{A} L_{B}: F^{p} \rightarrow F^{m}
$$

Recall that the rank of a matrix is equal to the rank of the associated linear transformation. The rank of $A B$ being equal to m is equivalent to $L_{A B}$ being onto, which implies L_{A} is onto, and this is equivalent to A having rank m.
3. (16 pts) By any legitimate method, solve the system of linear equations over \mathbb{R}

$$
\begin{array}{rll}
x_{1} & +x_{3}+2 x_{4} & =1 \\
2 x_{1}-x_{2}+x_{3} & =-2 \\
& x_{2}+2 x_{3}+3 x_{4} & =3
\end{array}
$$

(If no solution exists, explain. If there are solutions, describe the general solution.)
[See a separate note.]
4. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V such that $T^{2}=T$.
(1) Show that the only possible eigenvalues of T are 1 and 0 .
(2) Prove that T is diagonalizable. (Hint: For every $v \in V$, show that $T(v) \in E_{1}$ and $v-T(v) \in E_{0}$. Then try to apply one of the diagonalizability criteria.)
(1) Suppose $T(v)=\lambda v$ with $\lambda \in F, v \neq 0$. Then

$$
T^{2}(v)=T(T(v))=T(\lambda v)=\lambda T(v)=\lambda(\lambda v)=\lambda^{2} v
$$

The assumption in the problem says $T^{2}=T$, so we have a chain of deductions

$$
T^{2}(v)=T(v) \quad \Rightarrow \quad \lambda^{2} v=\lambda v \quad \Rightarrow \quad\left(\lambda^{2}-\lambda\right) v=0 \quad \Rightarrow \quad \lambda^{2}-\lambda=0 \quad \Rightarrow \quad \lambda(\lambda-1)=0 .
$$

(The second last arrow is valid because $v \neq 0$.) Therefore $\lambda=0$ or $\lambda=1$.
(2) One criterion is that T is diagonalizable if V is spanned by the eigenspaces. In our case, by (1), it suffices to observe that V is spanned by E_{0} and E_{1}.

For every $v \in V$, we have $T(T(v))=T(v)$, so clearly $T(v) \in E_{1}$. Moreover $T(v-T(v))=$ $T(v)-T^{2}(v)=0$ so

$$
v-T(v) \in N(T)=E_{0}
$$

This implies that

$$
v=\underbrace{(v-T(v))}_{\in E_{0}}+\underbrace{T(v)}_{\in E_{1}} \in \operatorname{span}\left(E_{0} \cup E_{1}\right) .
$$

By the criterion, T is diagonalizable.
5. For the two matrices below, considered over \mathbb{R}, (1) determine whether it is diagonalizable and (2) if it is, then find an invertible matrix Q and a diagonal matrix D such that $D=Q^{-1} A Q$.

$$
\text { (a) } A=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right), \quad \text { (b) } A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

[See a separate note.]
3. (16 pts) By any legitimate method, solve the system of linear equations over \mathbb{R}
(If no solution exists, explain. If there are solutions, describe the general solution.)

Sol The system hae the form $A x=b$ where

$$
A=\left(\begin{array}{cccc}
1 & 0 & 1 & 2 \\
2 & -1 & 1 & 0 \\
0 & 1 & 2 & 3
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)
$$

Apply Gaussian elimination to $(A \mid b)$.

$$
\begin{aligned}
& (A \mid b)=\left(\begin{array}{cccc|c}
(1) & 0 & 1 & 2 & 1 \\
\mathrm{C}_{2} & -1 & 1 & 0 & -2 \\
0 & 1 & 2 & 3 & 3
\end{array}\right) \text { row } 2-2 \times \text { (rows) }
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left(\begin{array}{llll|l}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & 4 & 4 \\
0 & 1 & 2 & 3 & 3
\end{array}\right) \\
& \text { Now } 3 \text { - vow } 2 \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & 4 & 4 \\
0 & 0 & 1 & -1 & -1
\end{array}\right) \text { now } 1-\text { now } 3 \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 3 & 2 \\
0 & 1 & 0 & 5 & 5 \\
0 & 0 & 1 & -1 & -1
\end{array}\right) \\
& \text { This is in } \\
& \text { reduced row } \\
& \text { echelon from. } \\
& \begin{array}{llll}
x_{1} & x_{2} & x_{3} & \left(x_{4}\right)
\end{array}
\end{aligned}
$$

free variable. $\quad \operatorname{set} x_{4}^{\prime}=t$.
The new system of equations is

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}+3 x_{4}=2 \\
x_{2}+5 x_{4}=5 \\
x_{3}-x_{4}=-1
\end{array} \sim x_{1}=2-3 t\right. \\
& \therefore x_{2}=5-5 t \\
& \sim \text { genera sol is }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=-1+t \\
& \left(\begin{array}{c}
2-3 t \\
5-5 t \\
-1+t \\
t
\end{array}\right)=\left(\begin{array}{c}
2 \\
5 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{c}
-3 \\
-5 \\
1 \\
1
\end{array}\right) t \\
& \text { either is correct. }
\end{aligned}
$$

Remark Geneal sol is not unique. Any sol of the form $s_{0}+a t$, where $\left\{\begin{array}{l}s_{0} \text { is sol to } A x=b \\ a \text { is " } A x=0 . \\ t \text { is free variable (could have austhe nave) }\end{array}\right.$ is considered correct.
5. For the two matrices below, considered over \mathbb{R}, (1) determine whether it is diagonalizable and (2) if it is, then find an invertible matrix Q and a diagonal matrix D such that $D=Q^{-1} A Q$

$$
\text { (a) } A=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right), \quad \text { (b) } A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Sol (a)
(1)

$$
\begin{aligned}
& c_{A}(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{cc}
3-t & 2 \\
2 & 3-t
\end{array}\right) \\
& \quad=(3-t)^{2}-4=t^{2}-6 t+5=(t-1)(t-5)
\end{aligned}
$$

\therefore Eigenvalues are 1,5 .
$\Rightarrow A$ is dispmalizable (since 2×2 matrix hae. I
(2) We find eigenvectors for $\lambda=1,5$.

$$
\begin{aligned}
& \lambda=1 \quad E_{1}=\left\{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}: \frac{(A-I)}{\prime \prime}\binom{x_{1}}{x_{2}}=0\right\} \\
& \left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \\
& =\left\{\binom{x_{1}}{x_{2}}: 2 x_{1}+2 x_{2}=0\right\}=\operatorname{span}\left\{\binom{1}{-1}\right\} \text {. } \\
& \begin{array}{c}
\lambda=5 \\
E_{5}=\left\{\binom{X_{1}}{x_{2}}: \frac{(A-5 I)}{11}\binom{x_{1}}{x_{2}}=0\right\} \\
\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)
\end{array} \\
& =\left\{\binom{x_{1}}{x_{2}}:-2 x_{1}+2 x_{2}=0\right\}=\operatorname{span}\left(\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}\right)
\end{aligned}
$$

Putting eighnecturs as collums of Q, we constrict $Q=\binom{1}{-1}\binom{1}{1}$, and $Q^{-1} A Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 5 \\ 0\end{array}\right)$ for $\binom{1}{-1}$ eigenvalue for $\binom{1}{1}$
(b)

$$
\text { (1) } \operatorname{ch}_{A}(t)=\operatorname{det}\left(\begin{array}{ccc}
1-t & 1 & 0 \\
0 & 1-t & 1 \\
0 & 0 & 1-t
\end{array}\right)=(1-t)^{3} \text {. }
$$

$\Rightarrow \lambda=1$ is the only eigenvalue, with multiplicity $m_{1}=3$.

$$
\operatorname{dim} E=3-\operatorname{rank}(A-I)=3-\operatorname{rank}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

use formula

$$
\text { dime formula } E_{\lambda}=n-\operatorname{rank}(A-\lambda I)=3-2=1 .
$$

for $A: n \times n$
since $\operatorname{dim} E_{1}<m_{1}, A$ is not diagranalizable.

