EE 120: Signals and Systems
Midterm 1
University of California Berkeley
October 28, 2018
Department of EECS

Problem 1 (50 points)
(a) By pattern-matching the coefficients,

$$
(i \omega R C+1) H(\omega)=i \omega R C-1 \Longrightarrow R C \dot{y}+y=R C \dot{x}-x
$$

Giving us the desired linear, constant-coefficient differential equation.

$$
\dot{y}=-\frac{1}{R C} y+\dot{x}-\frac{1}{R C} x
$$

In creating the integrator-adder-gain block diagram implementation of the filter, it will be illustrative to integrate the differential equation:

$$
y=-\frac{1}{R C} \int y+x-\frac{1}{R C} \int x
$$

(b)

$$
H(\omega)=\frac{i \omega R C-1}{i \omega R C+1}=\frac{i \omega-\frac{1}{R C}}{i \omega+\frac{1}{R C}}=-\frac{\frac{1}{R C}-i \omega}{\frac{1}{R C}+i \omega}
$$

Observing that the numerator is the complex conjugate of the denominator, we find that

$$
|H(\omega)|=1
$$

This is an all-pass filter. Solving for the phase response, we have

$$
\begin{aligned}
\angle H(\omega) & =\angle(-1)+\angle\left(\frac{1}{R C}-i \omega\right)-\angle\left(\frac{1}{R C}+i \omega\right) \\
& =\pi-2 \tan ^{-1}(R C \omega)
\end{aligned}
$$

The plot is as follows, where the x-axis is ω, the y-axis is $\angle H(\omega)$, the y-intercept is π, the left asymptote is 2π, and the right asymptote is 0 .

(c)

$$
G(\omega)=\int_{-\infty}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} e^{-i \omega t} \mathrm{~d} t=\int_{-\infty}^{\infty} e^{-i \omega t} \mathrm{~d} f(t)
$$

Using integration by parts, where $u=e^{-i \omega t}$ and $\mathrm{d} v=\mathrm{d} f(t)$, such that $\mathrm{d} u=$ $-i \omega e^{-i \omega t} \mathrm{~d} t$ and $v=f(t)$, we have

$$
G(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} \mathrm{~d} f(t)=\left.f(t) e^{-i \omega t}\right|_{-\infty} ^{\infty}+i \omega \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \mathrm{~d} t=0+i \omega F(\omega)
$$

Where the first term goes to 0 because we assume $\lim _{t \rightarrow \pm \infty} f(t)=0$, a clarification made during the examination. The second term can be recognized from the analysis equation, with a coefficient of $i \omega$ falling out of the $d u$ term in integration by parts.
(d)

$$
H(\omega)=\frac{i \omega-\frac{1}{R C}}{i \omega+\frac{1}{R C}}=i \omega\left(\frac{1}{i \omega+\frac{1}{R C}}\right)-\frac{1}{R C} \frac{1}{i \omega+\frac{1}{R C}}
$$

Observing the Fourier pair

$$
e^{-\frac{t}{R C}} u(t) \stackrel{\mathcal{F}}{\hookrightarrow} \frac{1}{i \omega+\frac{1}{R C}}
$$

We know that

$$
-\frac{1}{R C} 1 e^{-\frac{t}{R C}} u(t) \stackrel{\mathcal{F}}{\hookrightarrow}-\frac{1}{R C} \frac{1}{i \omega+\frac{1}{R C}}
$$

Using part (c), we find that

$$
i \omega\left(\frac{1}{i \omega+\frac{1}{R C}}\right) \stackrel{\mathcal{F}}{\mapsto} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{-\frac{t}{R C}} u(t)\right)=\delta(t)-\frac{1}{R C} e^{-\frac{t}{R C}} u(t)
$$

Hence $H(\omega)$ must be the frequency response of $h(t)=\delta(t)-\frac{2}{R C} e^{-\frac{t}{R C}} u(t)$.

Problem 2 (60 points)

(a)

$$
y(n)=\alpha y(n-1)+x(n)-x(n-1)
$$

(b) We present two approaches.

Method 1:

$$
\begin{aligned}
f(n) & =\alpha f(n-1)+\delta(n)-\delta(n-1) \\
f(0) & =\alpha f(-1)+\delta(0)-\delta(-1)=1 \\
f(1) & =\alpha f(0)+\delta(1)-\delta(0)=\alpha-1 \\
f(2) & =\alpha f(1)=\alpha(\alpha-1) \\
f(3) & =\alpha f(2)=\alpha^{2}(\alpha-1) \\
& \vdots \\
f(n) & =\alpha^{n-1}(\alpha-1)
\end{aligned}
$$

$$
f(n)=\alpha^{n} u(n)-\alpha^{n-1} u(n-1)= \begin{cases}0 & n<0 \\ 1 & n=0 \\ \alpha^{n-1}(\alpha-1) & n \geq 1\end{cases}
$$

Method 2:

$$
F(\omega)=\frac{1-e^{-i \omega}}{1-\alpha e^{-i \omega}}=\frac{1}{1-\alpha e^{-i \omega}}-\frac{e^{-i \omega}}{1-\alpha e^{-i \omega}}
$$

Using the time-shift property of the Fourier transform and the Fourier pair

$$
\frac{1}{1-\alpha e^{-i \omega}} \stackrel{\mathcal{F}}{\leftrightarrow} \alpha^{n} u(n)
$$

We have

$$
f(n)=\alpha^{n} u(n)-\alpha^{n-1} u(n-1)
$$

(c) Passing in input $x(n)=e^{i \omega n}$ into the given LCCDE, we obtain

$$
F(\omega) e^{i \omega n}-\alpha e^{-i \omega} F(\omega) e^{i \omega n}=e^{i \omega n}-e^{-i \omega} e^{i \omega n}
$$

Dividing by the complex exponential and grouping terms, we have

$$
\left(1-\alpha e^{-i \omega}\right) F(\omega)=1-e^{-i \omega} \Longrightarrow F(\omega)=\frac{1-e^{-i \omega}}{1-\alpha e^{-i \omega}}
$$

(d)

$$
F(\omega)=\frac{e^{i \omega}-1}{e^{i \omega}-0.99}
$$

If α is close to 1 , as is the case here, the two vectors representing $e^{i \omega}-1$ and $e^{i \omega}-\alpha$ are nearly identical for $e^{i \omega}$ not in the close neighborhood of 1 , so we find that $|F(\omega)| \approx 1$. This is a notch filter with notch at $\omega=0$.
(e)
(i)

$$
x(n)=\frac{1}{2} e^{i 0 n}+\frac{1}{2} e^{i \pi n} \Longrightarrow y(n)=\frac{F(0)}{2} e^{i 0 n}+\frac{F(\pi)}{2} e^{i \pi n}=\frac{F(\pi)}{2} e^{i \pi n}
$$

From the expression in the previous part, we know $F(\pi)=\frac{2}{1+\alpha}$, so

$$
y(n)=\frac{(-1)^{n}}{1+\alpha}
$$

(ii)

$$
\alpha=0.99 \Longrightarrow F(\pi) \approx 1 \Longrightarrow y(n) \approx \frac{(-1)^{n}}{2}
$$

The plot is an alternating sequence of $\pm \frac{1}{2}$, with $y(0)=\frac{1}{2}$.

Problem 3 We know that when $y(n)=\delta(n), r(n)=g(n)$. If we can find an input $\hat{x}(n)$ such that the corresponding $\hat{y}(n)=\delta(n)$, then this $\hat{x}(n)=g(n)$, since $x(n)=$ $r(n)$. From plotting the given input-output pair, we can observe that $y(n)-\alpha y(n-$ $N)=\delta(n)$. Since F is an LTI system, $\hat{x}(n)=x(n)-\alpha x(n-N)$ is the impulse response $g(n)$ of the system G. That is,

$$
g(n)=\delta(n)+\delta(n-1)-\alpha \delta(n-N)-\alpha \delta(n-N-1)
$$

And so we can read off the frequency response as

$$
G(\omega)=1+e^{-i \omega}-\alpha e^{-i \omega N}-\alpha e^{-i \omega(N+1)}
$$

Problem 4 (50 points)

(a)

$$
y(t)=\int_{-\infty}^{\infty} h(\sigma) x(t-\sigma) \mathrm{d} \sigma=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t-\sigma) \mathrm{d} \sigma
$$

By a change of variables $\tau=t-\sigma$, such that $\sigma=t-\tau$ and $\mathrm{d} \sigma=-\mathrm{d} \tau$,

$$
=\frac{1}{T} \int_{t+\frac{T}{2}}^{t-\frac{T}{2}} x(\tau)(-\mathrm{d} \tau)=\frac{1}{T} \int_{t-\frac{T}{2}}^{t+\frac{T}{2}} x(\tau) \mathrm{d} \tau
$$

Then we can read off the values

$$
\begin{aligned}
A & =\frac{T}{2} \\
B & =T
\end{aligned}
$$

This is a moving average filter over a time window T.
(b) Observing that $\lim _{T \rightarrow 0} h(t)=\delta(t)$, the system approaches the identity system.

$$
\lim _{T \rightarrow 0} y(t)=x(t)
$$

(c)

$$
\begin{aligned}
H(\omega) & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-i \omega t} \mathrm{~d} t \\
& =\left.\frac{1}{T} \frac{e^{-i \omega}}{-i \omega}\right|_{-\frac{T}{2}} ^{\frac{T}{2}} \\
& =\frac{e^{\frac{i \omega T}{2}}-e^{-\frac{i \omega T}{2}}}{i \omega T} \\
& =\frac{2}{\omega T} \frac{e^{\frac{i \omega T}{2}}-e^{-\frac{i \omega T}{2}}}{2 i} \\
& =\frac{\sin \left(\frac{\omega T}{2}\right)}{\frac{\omega T}{2}}
\end{aligned}
$$

From which we see that $C=\frac{T}{2}$ and $D=\frac{T}{2}$.

(d)
(i)

(ii)

$$
\omega_{0}=\frac{4 \pi}{T} \Longrightarrow T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{T}{2}
$$

Since the cosine undergoes two cycles over a duration of T,

$$
y(t)=0
$$

(iii)

(iv)

$$
y(t)=\frac{1}{T} \int_{t-\frac{T}{2}}^{t+\frac{T}{2}} x(\tau) \mathrm{d} \tau
$$

Case 1: $t<-\frac{T}{2} \Longrightarrow y(t)=0$
Case 2: $-\frac{T}{2} \leq t \leq \frac{T}{2}$

$$
y(t)=\frac{1}{T} \int_{0}^{t+\frac{T}{2}} e^{-\tau} \mathrm{d} \tau=-\left.\frac{e^{-\tau}}{T}\right|_{0} ^{t+\frac{T}{2}}=\frac{1-e^{-\left(t+\frac{T}{2}\right)}}{T}
$$

Case 3: $t>\frac{T}{2}$

$$
y(t)=\frac{1}{T} \int_{t-\frac{T}{2}}^{t+\frac{T}{2}} e^{-\tau} \mathrm{d} \tau=-\left.\frac{1}{T} e^{-\tau}\right|_{t-\frac{T}{2}} ^{t+\frac{T}{2}}=\frac{e^{-\left(t-\frac{T}{2}\right)}-e^{-\left(t+\frac{T}{2}\right)}}{T}=e^{-T}\left(\frac{e^{\frac{T}{2}}-e^{-\frac{T}{2}}}{T}\right)
$$

