
Problem 1

Figure 1. P -V diagram for the thermodynamics process described in Problem 1.

a) To draw this on a P -V diagram we use the ideal gas law to obtain,

T

V 2
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P

nRV
→ P =

P1

V1

V.

The process thus appears as a straight line with slope P1/V1 on the P -V diagram as shown in
Figure 1. This is not an isobaric, isovolumetric, isothermal, or adiabatic process.

b) Work is represented on the PV diagram by the area under the curve as indicated in Figure 1.
This area is easily calculated geometrically or from the integral
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W = nR(T2 − T1)

c) We can use equipartition to calculate the change in energy,

∆U =
d

2
nR∆T.

Since a diatomic gas has 5 degrees of freedom, we find for our case that

∆U =
5

2
nR(T2 − T1)

The first law of thermodynamics gives us the heat transfer,

∆U = Q−W

W =
7

2
nR(T2 − T1)



d) Since this is a reversible process,

∆S =

∫

dQ

T
.

From part (c) we know that dQ = 7

2
nRdT which allows us to integrate,

∆S =
7

2
nR

∫ T2

T1

dT

T
=

7

2
nR lnT2/T1.

Problem 2

Figure 2. Cross-sectional view showing electric field lines and equipotential sur-

faces. Note that ~E = 0 for r < R1 and r > R2.

a) Because we can easily find the electric field using Gauss’s law, the best approach is to find

∆V = −

∫

~E · d~l. From symmetry considerations, an infinite cylindrical charge distribution must

have a field of the form ~E = E(r)r̂ in cylindrical coordinates. By considering a cylindrical
Gaussian surface of radius R1 < r < R2, length L, and the same symmetry axis as the charge
distributions, Gauss’s law tells us that

∫

~E · d ~A =
qenclosed

ǫ0

Replacing these quantities appropriately,
∫

~E · d ~A = 2πrLE(r)

qenclosed = −λL

→ ~E(r) = −

λ

2πǫ0r
r̂



The potential difference is therefore

V (R2)− V (R1) = −

∫

~E · d~l =
λ

2πǫ0

∫ R2

R1

1

r
dr

V (R2)− V (R1) =
λ

2πǫ0
lnR2/R1

Note that V2 > V1, as expected when going from a negative charge distribution towards a positive
one.

b) We have derived the electric field in part (a) and seen that it points radially inward. The lines
of constant equipotential are perpendicular to the electric field lines and form circles of constant
radii (this can also be seen by generalizing the result of the previous part). See Figure 2 for a
sketch.

c) An electron of charge q = −e in this electric field feels a force ~F = q ~E = eλ
2πǫ0r

r̂, i.e. it will be
pushed radially outward. By conservation of energy, we can find the final velocity:

Ei = Ef

PEi = KEf + PEf

q(V (R1)− V (R2)) = e(V (R2)− V (R1)) =
1

2
mv2f

This can be expressed either in terms of V1 and V2,

vf =

[

2e

m
(V2 − V1)

]1/2

or in terms of the actual potential difference calculated in part (a):

vf =

[

emλ

π ǫ0
lnR2/R1

]1/2
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Applying Kirchoff’s second rule on a clockwise loop encircling all 4 resistors,

−I3(R3 +Rx) + I1(R1 +R2) = 0
⇒

I1

I3
= R3+Rx

R1+R2
(1)

On the other hand, drawing a loop circling I3, Ix and the ammeter,

−I3R3 + I1R1 = 0
⇒

I1

I3
= R3

R1
(2)

Combining (1) and (2),
Rx = R2R3

R1

1
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Let the z-axis be pointing out of the paper.

For the contribution due to the wire, Bwire,
From the right hand rule, Bwire points in the ẑ direction.
Drawing a circle with radius a, centered on the wire and passing through the center of the
loop, by Ampere’s law,∫
B · dl = (B)(2πa) = µ0I ⇒ Bwire = µ0I

2πa ẑ

For the contribution due to the circular loop, Bloop,
From the right hand rule, Bloop also points in the ẑ direction.
By Biot-Savart law,
B = µ0I

4π

∫
dl×r
r2

= µ0I
4π

∫ 2π
0

(adθ)(a)ẑ
a2

⇒ Bloop = µ0I
2a ẑ

Combining the two, B = µ0I
2a (1 + 1

π
)ẑ
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a)
As the electrons flow through the set-up, they experience a magnetic force into the paper.
The accumulated electrons at the “back” side of the slab (with dimensions t× b) create a
net negative charge on that side and a net positive charge on the “front” side (also with
dimensions t× b).
This creates a electric potential difference, i.e. the Hall voltage, between the back side
and front side of the slab, and the corresponding electric force balances the magnetic force
exactly at equilibrium.

b)
Let vd denote the drift velocity, j denote the current density.
⇒ E = vdBw

⇒ KH = E

IB
= vd

I

On other hand, note that j = nevd = I

wt

⇒ KH = v

I
= 1

net

c)
The semiconductor candidate is better, as KH is inversely proportional to n.

d)
The “front” side (see explanation in part a)).
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Problem 6

a)

The flux into the page is decreasing, so the current will want to create a magnetic field into the page to
counteract this decrease. By the right hand rule, this means that the current flows clockwise (when the
fingers curl clockwise the thumb points inward).

b)

Since B is constant everywhere, we know that the flux integral is trivial. Thus, when the bottom of the rod
is a position s below the y = 0 point,

ΦB =

∫

~B · d ~A = ~B · ~A = Ba(a− s)

Use Faraday’s law to write (noting that v = ds
dt > 0 since s increases),

E = −
dΦB

dt
= Bav

And thus, the current through the rod is

I =
E

R
=

Bav

R
=

Bavπd2

16ρa
=

Bvπd2

16ρ

c)

The magnetic force on the two sides will cancel each other out as their currents are opposite. Thus, the force
is due to the top portion. Writing ~L = ax̂ from the reasoning in part a, we get that

~F = I~L× ~B = I(ax̂)× (−Bẑ) =
aB2vπd2

16ρ
ŷ

The terminal velocity occurs when this force balances the gravitiational force. Thus,

aB2vπd2

16ρ
= mg

v =
16mgρ

πaB2d2

Problem 7

a)

Imagine connecting just the three inductors connected to a battery. Call the currents through each of the
inductors I1, I2, and I3, respectively. Kirchoff’s rules give

V − L1

dI1
dt

− L2

dI2
dt

= 0

V − L1

dI1
dt

− L3

dI3
dt

= 0

I1 = I2 + I3

1



We want to rewrite this as an equation of the form

V − Leff
dI1
dt

= 0

Now, from the last expression in the Kirchoff rules, we know I2 = I1 − I3. By the second, we can get an
expression for I3 to get

dI2
dt

=
dI1
dt

−
dI3
dt

=
dI1
dt

−
L2

L3

dI2
dt

This implies

dI2
dt

=
dI1
dt

(

1 +
L2

L3

)

−1

Plug this into the first expression in the Kirchoff rules to get

V − L1

dI1
dt

− L2

dI1
dt

(

1 +
L2

L3

)

−1

= 0

V −

(

L1 + L2

(

1 +
L2

L3

)

−1
)

dI1
dt

= 0

So, the equivalent inductance is

Leff = L1 + L2

(

1 +
L2

L3

)

−1

Note that this implies inductors add like resistors.

b)

Now use Kirchoff’s loop rule on the circuit given (simplifying the inductors to its equivalent circuit) to write

V0 − IR− Leff
dI

dt
= 0

c)

The time constant here is Leff/R. Initially there is no current, so the form of the growth must be like
(looking at the general solution to the differential equation)

IR = Vmax(1− e−Rt/Leff )

Thus, we can solve

0.9Vmax = Vmax(1− e−Rt/Leff )

e−Rt/Leff = 0.1

−
R

Leff
t = ln(0.1)

t =
Leff

R
ln(10)
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