Chem 4B Spring 2018 Exam 3

TOTAL POINTS

80 / 100

QUESTION 1

Hydrocarbon 12 pts
1.1 name and circle stereocenters $2 / 6$
+0 pts Correct
cis-6-methyl-5-propylnon-3-ene
+1 pts 6-methyl

+ 1 pts 5-propyl
+ 0.5 pts cis
+1 pts non-3-ene
+ 0.5 pts correct order (i.e. methyl propyl)
$\checkmark+3$ pts correct name, incorrect backbone (takes priority over above items)
$\checkmark-1$ pts wrong numbering
+ 2 pts 4 stereocenters (0.5 pts/ea)
+1 pts 2 stereocenters
+ $\mathbf{0}$ pts All incorrect
, sec-pentyl, not isopentyl (-0.5); one stereocenter of four.
1.2 draw structure 6 / 6

$$
\checkmark+2 \text { pts Cyclopentane }
$$

$\checkmark+2$ pts Correct side chains
1-ethyl-3,3-dimethyl
$\checkmark+2$ pts R stereochemistry

+ $\mathbf{0}$ pts all incorrect

QUESTION 2

Newman projections for hydrocarbons 18 pts
2.1 Draw skeletal structure, star same compound 12 / 12
$\checkmark+3$ pts A - correct
$\checkmark+3$ pts B- - correct
$\checkmark+3$ pts C-correct
$\checkmark+3$ pts Star B \& C
2.2 Compound name, stereocenter? 6/6
$\checkmark+6$ pts Correct
3-ethyl-2-methyl-pentane

```
No stereocenter
    +1 pts 3-ethyl (if naming structure b or c)
    +1 pts 2-methyl (if naming structure b or c)
    +1 pts pentane (if naming structure b or c)
    +1 pts Correct order (i.e. ethyl methyl)
    +2 pts No stereocenter
    +2 pts Correct name for the wrong starred
structure (2,3,3-trimethylpentane)
    +0 pts Incorrect
```


QUESTION 3

Conformations 18 pts

3.1 Stable conformation, IMF? 0 / 6

+ 3 pts B is more stable
+ 3 pts stabilized by hydrogen bonding
$\checkmark+0$ pts Incorrect
- 1 pts one incorrect force listed (vdW interactions, steric hindrance,...)
- 2 pts two incorrect forces listed. (vdW interactions, steric hindrance,...)
3.2 Resonance structure 0 / 6
+ 3 pts Correct structure
+1.5 pts positive charge on L carbonyl
+1.5 pts negative charge on R carbonyl
$\checkmark+0$ pts incorrect
3.3 Newman projection 3 / 6
$\checkmark+3$ pts correct front carbon configuration for B
+ 3 pts correct back carbon configuration for B
+1.5 pts correct back carbon configuration for A
+ 0 pts incorrect

QUESTION 4

4 TLC plate 12 / 12

$$
\text { V + } 2 \text { pts A (top) }
$$

$\checkmark+2$ pts C (middle)
$\checkmark+2$ pts B (bottom)
$\checkmark+3$ pts All spots travel farther distance on right TLC plate

```
\(\checkmark+3\) pts same order as labeled in part (a)
+ \(\mathbf{0}\) pts incorrect
```


QUESTION 5

Peptides 40 pts
5.1 Ramanchandran plot 10 / 10
$\checkmark+2$ pts x-axis PHI, y-axis PSI
$\checkmark+2$ pts labeled -180 to +180
cannot assume axes crossing always corresponds to $(0,0)$
$\checkmark+1$ pts axes explicitly labeled degrees
OR
degree symbol on ALL number labels of axes
$\checkmark+2.5$ pts PPI point plotted $(-75,+160)$
$\checkmark+2.5$ pts RH alpha-helix region

+ 0 pts all incorrect
5.2 Helix length 7 / 7
$\checkmark+4$ pts PPI helix would take a shorter sequence
$\checkmark+3$ pts $1.9 \AA$ per AA for PPI vs $1.5 \AA$ per AA for alpha-helix
must have "1.5 Å per $A A^{\prime}$ " for alpha-helix

$$
\text { + } \mathbf{0} \text { pts incorrect }
$$

5.3 dipeptide Pro-Pro 10 / 10
$\checkmark+3$ pts Correct structure
$\checkmark+4$ pts cis amide
$\checkmark+3$ pts stereochemistry

+ 0 pts incorrect
5.4 Stabilization interaction 5 / 6
$\checkmark+6$ pts accepted correct answers
no H-bonding in PPI
H-bonding
H -bonding in backbone

H-bonding between amine and carbonyl

+ 0 pts incorrect
H -bonding in side (R) chains
Less/reduced H-bonding
Side chain interactions
$\checkmark-1$ pts listed 1 non-hydrogen bonding force (e.g. torsion) or geometry (e.g. cis/trans/rotation) as the reason for no H-bonding OR any other single incorrect statement
- 2 pts listed 2 non-hydrogen bonding forces
- 3 pts listed 3 non-hydrogen bonding forces
5.5 Dihedral angle 0/7
+3 pts phi is more constrained
+2 pts because it is within a ring
due to R group of proline connected to N
+ 2 pts cannot freely rotate without BREAKING COVALENT BONDS
must have "bond breaking", "break bond", or equivalent in answer

```
no credit for "constrained", "ring strain", "steric strain",
etc.
\checkmark + 0 pts incorrect
```


QUESTION 6

6 bonus question 7 / 0
$\sqrt{ } 7$ pts I GOT THIS

Chemistry 4B, Exam III

April 16, 2018

Professor M.C. Hammond

Rules:

1. No lecture notes or books permitted
2. No calculators are needed (and are not allowed)
3. Time: 50 minutes
4. Periodic Table, Physical Constants and Conversion Factors, Structures of Amino Acids included
5. Show all work for full credit and partial credit.

"Early chemists describe the first dirt molecule" The Complete Far Side, 1980-1994 (Gary Larson)

BONUS (1 point): Write down the following statement below: "I GOT THIS!"
I GOT THIS!

1. a) Name the hydrocarbon shown below and circle all stereocenters, if any: (6 points)

> 4-butyt-5-methertoctare X \& double beat
> cis-4-pentyt $=5$-octere \& issman ol rentone?
> cis-4-isupeatyl-5 -oclene

5 castans
1-buty1-5-4ethylsetine 4-peatyl-5-octere
b) Draw the structure of (R)-1-ethyl-3,3,-dimethylcyclopentane. (6 points) (Hint: Get the structure correct for partial credit, then figure out the stereochemistry)

${ }^{3} \mathrm{C}$ CN RU
2. a) Three Newman projections for hydrocarbons are shown below. Draw the skeletal structure corresponding to each structure. Star the two structures that represent the same compound. (12 points)

A

B

C
b) Name the compound represented by those two structures that you starred in (a). (4 points)
2-methyl-3-ethyl pentare
c) Does it have a stereocenter? Circle: yes or no (2 points)
3. The following organic compound has two possible conformations (Note: the thicker bond is a regular single bond, but is marked for part c):

a) Which conformation is more stable, \mathbf{A} or \mathbf{B} ? Briefly explain what intermolecular force(s) make one conformation more stable than the other. (6 points)

b) Draw a resonance structure that illustrates the stabilization effect. (6 points)

c) Draw the Newman projection for the more stable conformation along the marked C-C bond. (6 points)

4. On the left is a normal phase thin-layer chromatography (TLC) plate run using a mobile phase of 25% ethyl acetate 75% heptane to analyze a mixture containing the compounds shown.
a) Label on the TLC which spots correspond to A, B, and C. (6 points)
Normal: polar stationery plate

A
zero

C $\quad B^{\text {polesitity }}>C>A$
B

Solvent front

b) On the blank TLC above, draw the predicted result for analyzing the same mixture of compounds using a mobile phase of 50% ethyl acetate/ 50% heptane. Be sure to label the spots. (6 points)

$$
\begin{aligned}
& \text { Everything moves farther because the mobile phase more } \\
& \text { effectively competes with the slationany phase }
\end{aligned}
$$

5. Poly-Pro sequences form a unique type of secondary structure called a polyproline I (PPI) helix, which is left-handed and has dihedral angles of ($\Phi=-75^{\circ}, \Psi^{\prime}=+160^{\circ}$).
a) Sketch a Ramachandran plot where you (i) plot the point corresponding to the dihedral angles for the PPI helix and (ii) label the general region for the regular α helix. Be sure to label your x - and y-axes. (10 points)

b) The rise (length per amino acid residue) for the PPI helix is $1.9 \AA$. Which type of helix, PPI or α helix, would take a shorter primary sequence to span the length of a cell membrane ($\sim 3 \mathrm{~nm}$)? Explain briefly (exact calculations are not needed). (7 points)
```
1.5 R /residue
The PPI helix would lake a shorter polypeptide primory requence to
span the cell membrane because an \(\alpha\)-helix has a length of I.SA
per residue, Siace each residue is "Ionge" - \(1.90 \wedge\) in a PPI helic,
it would lake lers residues which mears a shorter primary sequerce
```

The PPI helix contains all cis peptide bonds. Shown is the dipeptide Pro-Pro in the trans configuration.

-1

c) Draw the dipeptide Pro-Pro in the cis conformation, showing side chains and correct stereochemistry. (10 points)

d) Look at the structure you drew in part c. What major type of stabilizing interaction is missing in the PPI helix compared to other amino acid secondary structures? (6 points)

```
Htydrogen bonding in the bactbme. Must helice, hydrogen bond with thr it 3 (3,0)
ith (k) or its (r) aming acid lesidue from the ith ammo s.cid. However, this is
nob passible with the streccherusitry of the structure in e.
```

e) Which dihedral angle, Φ (phi) or $\Psi(\mathrm{psi})$, is more constrained for Pro than other amino acids in a peptide? Explain briefly. (7 points)

D: $N H-C_{\alpha}$
$\psi=C_{\alpha}-C_{0}$
Q is more costrained tor proline, A_{s} the baclubeme rotater around the $C_{k}-C O$ land the proline R-group rotates arown. This leads to steric rcpulsion between the R groups \& especially the carboay:

