Nuclear Engineering 180 Fall Semester 2000 Second Examination

Seventy-Five Minutes, Closed Book. One $8 - \frac{1}{2}$ " × 11" Sheets of Notes Allowed.

PLASMA FORMULARY ALLOWED.

1. A tokamak plasma has an ion temperature profile and density profile given by:

$$T_i(r) = T_0(1 - (\frac{r}{a})^2)$$
$$n_i(r) = n_0(1 - (\frac{r}{a})^2)$$

where $T_0 = 15.0$ KeV, $n_0 = 2 \times 10^{20}$ m⁻³, and a = 2.0 m. The magnetic field $B_{\phi}(r = 0)$ is 4.0 T. The major radius R of the tokamak is 6.0 m. The electron temperature $T_e = T_e(0) = 10.0$ keV everywhere.

- a. Find the classical ion heat conduction through the flux surface at r = 0.9a. Assume that the ions have an average mass of $2.5 \times$ the proton mass. Neglect variation in the magnetic field, and use $B = B_{\phi}(r=0)$ for your calculation.
- b. Find the resistivity in ohm-meters.
- c. If the plasma carries a current of 10 MA toroidally, find the total power in ohmic heating of the plasma.
- d. Assume that a fraction f of the plasma's surface area at r = 0.9a is connected to the reactor wall by parallel electron heat conduction along stochastic magnetic field lines. Assume that these field lines are 1000 meters long (= L) and that the electron temperature gradient is $T_e(0)/L$. Find this fraction f if the experimentally observed heat conduction is 50 MW.
- 2. A laser-heated ICF target has a fusion yield of 100 MJ. $\rho R = 10$ in cgs units. The internal temperature of the spherical pellet is 10 keV for both the electrons and ions. Take the burnup fraction $f_B = \rho R/(6 + \rho R)$.
 - a. Find the final value of ρ and R in cgs units.
 - b. Find the longest wavelength for light which will penetrate the pellet at this density.
 - c. Find the hydrodynamic disassembly time $R/(4c_s)$ for this pellet.
 - d. The Stefan-Boltzmann constant σ for blackbody radiation is 5.6699×10^{-8} watt m⁻² deg C^{-4} . Find the outgoing blackbody radiation from the pellet during the fusion burn.