1. (10 points)

Consider

$$
A=\left[\begin{array}{llll}
1 & 3 & 5 & 9 \\
2 & 4 & 6 & 7 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Compute $\operatorname{Null}(\mathrm{A})$, and $\operatorname{Col}(\mathrm{A})$. Then find a basis for $\operatorname{Null}(\mathrm{A})$, and $\operatorname{Col}(\mathrm{A})$, respectively.

A:
In order to evaluate $\operatorname{Null(A),~we~need~to~solve~the~equation~} A \vec{x}=\overrightarrow{0}$.
Perform row reduction

$$
\left[\begin{array}{llll}
1 & 3 & 5 & 9 \\
2 & 4 & 6 & 7 \\
1 & 2 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hence

$$
\operatorname{Null}(A)=\operatorname{span}\{\vec{b}\}, \quad \vec{b}=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]
$$

The basis is $\{\vec{b}\}$.

The column space is spanned by the pivot columns, with basis given by the 1st, 2nd, 4th columns.
2. (10 points) Consider

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 5 & 0 \\
-2 & 0 & 4
\end{array}\right]
$$

Find the eigenvalues of A and state their algebraic multiplicities. Then find an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of A.

A:
The characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(5-\lambda)(4-\lambda)-(-2)(5-\lambda)(-2)=-\lambda(\lambda-5)^{2}
$$

Hence the eigenvalue are 0 (with multiplicity 1) and 5 (with multiplicity 2).
For the eigenvalue 0 , perform row reduction for $A-0 I$ and obtain the normalized vector

$$
\vec{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Perform row reduction for $A-5 I$, we obtain an eigenspace spanned by $\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
After normalization, we obtain

$$
\vec{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

The basis for \mathbb{R}^{3} is given by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
3. (15 points) Solve the initial-value problem

$$
y^{\prime \prime}-6 y^{\prime}+9 y=6 t e^{3 t}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

A:
Find the roots of the auxiliary equation

$$
r^{2}-6 r+9=(r-3)^{2}=0
$$

so $r=3$ is the repeated root, and the general solution for the homogeneous equation is

$$
y(t)=\left(C_{1}+C_{2} t\right) e^{3 t}
$$

Now we find the particular solution. Use method of undetermined coefficients, the particular solution takes the form

$$
y_{p}(t)=t^{2}(A+B t) e^{3 t} .
$$

Plug into the equation and we have

$$
y_{p}(t)=t^{3} e^{3 t} .
$$

The general solution is

$$
y(t)=t^{3} e^{3 t}+\left(C_{1}+C_{2} t\right) e^{3 t}
$$

Use the initial condition

$$
1=y(0)=C_{1}, \quad 0=y^{\prime}(0)=3 C_{1}+C_{2}
$$

we have $C_{1}=1, C_{2}=-3$.
So the solution is

$$
y(t)=e^{3 t}\left(t^{3}-3 t+1\right)
$$

4. (9 points) True or False. If True, explain why. If False, give a counterexample. The correct answer is worth 1 point for each problem. The rest of the points come from the justification.
(a) If the matrix $A \in \mathbb{R}^{3 \times 3}$ and A has two rows that are the same, then $\operatorname{det} A=0$.

A: True. If A has two rows that are the same, then A is not invertible and $\operatorname{det} A=0$.
(b) Let A be an $n \times n$ matrix. If A^{9} is the zero matrix, then the only eigenvalue of A is 0 .

A: True. Suppose that $A v=\lambda v$. Then, $A^{9} v=\lambda^{9} v$ through repeated multiplication. But, $A^{9}=0$, so $A^{9} v=0$. Thus, $\lambda^{9} v=0 . v$ is an eigenvector and therefore is not the zero vector, so $\lambda^{9}=0$, and $\lambda=0$. That is, the only possible eigenvalue of A is 0 .
(c) There exists a 2×3 matrix A such that $\operatorname{Col}(A)=\{\overrightarrow{0}\}$ and $\operatorname{Null}(A)=\{\overrightarrow{0}\}$.

A: False. By rank theorem, $\operatorname{dim} \operatorname{Col}(A)+\operatorname{dimNull}(A)=3$, so it is impossible that both subspaces have dimension 0 .
5. (6 points) $A \in \mathbb{R}^{4 \times 4}$ has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=4, \lambda_{4}=6$, respectively. Calculate the determinant of A. You need to explain how you obtained the answer.

A: A has 4 distinct eigenvalues and hence is diagonalizable as

$$
A=V D V^{-1}
$$

Therefore

$$
\operatorname{det} A=\operatorname{det} V \operatorname{det} D \operatorname{det} V^{-1}=\operatorname{det} D
$$

The answer is

$$
\operatorname{det} A=-1 \cdot 2 \cdot 4 \cdot 6=-48
$$

6. (10 points) Find the curve $y=C_{1}+C_{2} 2^{x}$ which gives the best fit (in the least-squares sense) to the three points $(x, y)=(0,6),(1,4),(2,0)$.

A: First write down the equation if the curve indeed passes through all 3 points

$$
C_{1}+C_{2}=6, \quad C_{1}+2 C_{2}=4, \quad C_{1}+4 D=0 .
$$

The least squares solution of the form $A^{T} A=A^{T} b$, with

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
6 \\
4 \\
0
\end{array}\right] .
$$

Compute

$$
A^{T} A=\left[\begin{array}{cc}
3 & 7 \\
7 & 21
\end{array}\right], \quad A^{T} b=\left[\begin{array}{l}
10 \\
14
\end{array}\right] .
$$

The solution is

$$
C_{1}=8, \quad C_{2}=-2 .
$$

7. (15 points)
(a) Find a solution to the heat equation on a rod of length $L=\pi$

$$
\frac{\partial u}{\partial t}(x, t)=3 \frac{\partial^{2} u}{\partial x^{2}}(x, t), \quad \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0
$$

for all $t>0$, with the initial condition

$$
u(x, 0)=1+3 \cos (2 x)-5 \cos (3 x) .
$$

A:
The general solution takes the form

$$
u(x, t)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} e^{-3 n^{2} t} \cos (n x)
$$

Match the initial condition, we find

$$
c_{0}=2, \quad c_{2}=3, \quad c_{3}=-5,
$$

and all other constants vanish.

Hence the solution is

$$
u(x, t)=1+3 e^{-12 t} \cos (2 x)-5 e^{-27 t} \cos (3 x)
$$

(b) Consider the function $f(x)=|x|$ defined on the interval $[-1,1]$. Draw a sketch of the function on the interval $[-1,1]$. Find the coefficients a_{n}, b_{n} such that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

A:
Sketch.
Since f is an even function, all b_{n} will vanish. We have

$$
a_{0}=\int_{-1}^{1} f(x) d x=1
$$

and

$$
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x=\frac{2}{\pi^{2} n^{2}}\left[(-1)^{n}-1\right]
$$

8. (10 points)
(a) Let $p(x)=x^{2}, q(x)=x$, and the inner product for two polynomials $p(x), q(x)$ is defined as

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Show that

$$
\langle p, p\rangle \leq\langle p+a q, p+a q\rangle
$$

for any $a \in \mathbb{R}$.
A:
First evaluate that $\langle p, q\rangle=0$. Hence p, q are orthogonal polynomials under this inner product.

Then

$$
\langle p+a q, p+a q\rangle=\langle p, p\rangle+2 a\langle p, q\rangle+a^{2}\langle p, q\rangle=\langle p, p\rangle+a^{2}\langle q, q\rangle \geq\langle p, p\rangle .
$$

(b) Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, which defines an inner product on \mathbb{R}^{2} as follows

$$
\langle\vec{x}, \vec{y}\rangle=\vec{x}^{T} A \vec{y}, \quad \vec{x}, \vec{y} \in \mathbb{R}^{2}
$$

Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Use the Gram-Schmidt process to find a vector that is orthogonal to \vec{v}_{1} under this inner product. (You DO NOT need to prove that $\vec{x}^{T} A \vec{y}$ is indeed an inner product)

A:
Take for example $\vec{v}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Compute

$$
\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle=2, \quad\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=1 .
$$

The second vector is

$$
\vec{w}_{2}=\vec{v}_{2}-\vec{v}_{1} \frac{\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] .
$$

9. (10 points) The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ orthogonally projects every point in \mathbb{R}^{3} onto the plane $x+y=0$. Write down the matrix representation of T in the standard basis of \mathbb{R}^{3}.

A: First, the solution to the linear system $x+y=0$ is the subspace

$$
W=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

W has an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Then linear transformation T is then defined as

$$
T(\vec{v})=\vec{v}_{1}\left(\vec{v}_{1} \cdot \vec{v}\right)+\vec{v}_{2}\left(\vec{v}_{2} \cdot \vec{v}\right) .
$$

Direct computation shows that

$$
T\left(\vec{e}_{1}\right)=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right], \quad T\left(\vec{e}_{2}\right)=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right], \quad T\left(\vec{e}_{3}\right)=\vec{e}_{3} .
$$

Hence the matrix representation of T in the standard basis is

$$
\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1 .
\end{array}\right]
$$

