Solutions to Midterm 1

Problem 1. (a) Set up an absolute (x, y) frame with the x-axis directed horizontally to the right. When P is applied, the force acting on block A is $2 P$. If $P=60$,

$$
2 P=120>\mu N_{A}=0.5(20 \mathrm{~g})=98.1
$$

Thus slipping between block A and cart B occurs. For block A,

$$
\begin{array}{ll}
& \sum F_{x}=m a_{x} \\
\Rightarrow & 2 P-\mu N_{A}=20 a_{A} \\
\Rightarrow & a_{A}=1.095 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

For block B,

$$
\begin{array}{ll}
& \sum F_{x}=m a_{x} \\
\Rightarrow & \mu N_{A}=100 a_{B} \\
\Rightarrow & a_{B}=0.1 \mathrm{~g}=0.981 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Both A and B move to the right but $a_{A}>a_{B}$ because of slipping.

(b) If $P=40$,

$$
2 P=80<\mu N_{A}=98.1
$$

There is no slipping. For blocks A and B combined,

$$
\begin{array}{ll}
& \sum F_{x}=m a_{x} \\
\Rightarrow & 2 P=(20+100) a \\
\Rightarrow & a_{A}=a_{B}=0.667 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Problem 2. Set up an absolute (x, y) frame with the x-axis directed to the right. When the system moves from an initial rest configuration with the spring stretched by 2 m to a final configuration with the spring being unstretched,

$$
\begin{array}{ll}
& U_{1-2}=\Delta T=T_{2} \\
\Rightarrow & \frac{1}{2} k\left(2^{2}\right)=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2} \\
\Rightarrow & 2(180)=\frac{1}{2}(40) v_{A}^{2}+\frac{1}{2}(60) v_{B}^{2} \tag{1}
\end{array}
$$

The spring forces are action and reaction internal forces and the net external force on the system is zero. Thus

$$
\begin{array}{ll}
& \Delta G=G_{2}-G_{1}=0 \\
\Rightarrow & m_{A} v_{A}+m_{B} v_{B}=0 \\
\Rightarrow & 40 v_{A}+60 v_{B}=0 \tag{2}
\end{array}
$$

There are 2 unknowns v_{A}, v_{B} in 2 equations. Simultaneous solution gives

$$
v_{A}=3.29 \mathrm{~m} / \mathrm{s}
$$

$$
v_{B}=-2.19 \mathrm{~m} / \mathrm{s}
$$

Block A moves to the right and block B to the left.
Problem 3. In this oblique central impact, the tangential direction is parallel to the stationary surface and the normal direction is perpendicular to the stationary surface. For the moving particle,

$$
\begin{array}{ll}
& \Delta G_{t}=0 \\
\Rightarrow \quad & v \cos \theta=v^{\prime} \cos (\theta / 2) \tag{1}
\end{array}
$$

Restitution in n-direction yields

$$
\begin{equation*}
e=\frac{v^{\prime} \sin (\theta / 2)}{v \sin \theta} \tag{2}
\end{equation*}
$$

Eliminate v from Eqs. (1) and (2),

$$
e=\cot \theta \tan (\theta / 2)
$$

For $\theta=40^{\circ}$,

$$
e=0.434
$$

