
CS 61BL Data Structures & Programming Methodology
Summer 2018 Midterm 2

This exam has 8 questions worth a total of 25 points and is to be completed in 80 minutes.
The exam is closed book except for two double-sided, handwritten cheat sheets. No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.
Write the statement below in the blank provided and sign. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

Signature:

Question Points
1 1/2

2 1/2

3 5
4 5
5 6
6 4
7 4
8 0

Total 25

Name

Student ID

Lab Section

Name of person to left

Name of person to right

• There may be partial credit for incomplete answers. Write as much of the solution as you can,
but we may deduct points if your answers are much more complicated than necessary.

• Work through the problems with which you are comfortable first. Do not get overly captivated
by interesting design issues or complex corner cases you’re not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines. For
code-writing questions, write only one statement per line and do not write outside the lines.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled
and executed, but in the event that we do catch any bugs in the exam, we’ll announce a fix.
Unless we specifically give you the option, the correct answer is not, ‘does not compile.’

1. (1/2 pt) Your Thoughts

is a powerful motivator.

CS 61BL Midterm 2, Summer 2018

2. (1/2 pt) So It Begins Write the statement on the front page and sign. Write your name, ID, and
your lab section. Write the names of your neighbors. Write your name in the corner of every page.

3. (5 pts) Dynamic Method Selection Suppose a student is working on their Gitlet project and
wants to know what will happen if they define a Commit and MergeCommit class as shown below.

public class Commit {

public int compareTo(Commit o) { ... } // A

public boolean equals(Object o) { ... } // B

}

public class MergeCommit extends Commit {

public int compareTo(Commit o) { ... } // C

public int compareTo(MergeCommit o) { ... } // D

public boolean equals(Object o) { ... } // E

}

For each line below, write either the method that will be executed at runtime (A, B, C, D, E), or
choose Compile Error if the line will cause a compilation error, or Runtime Error if the line will
cause an error at runtime. If an error occurs, assume that the line is removed from the program.

Either write a letter in the blank, or fill in only one circle for each line; do not do both.

public class MergeCommitTest {

public static void main(String[] args) {

Commit com = new MergeCommit();

MergeCommit mrg = new MergeCommit();

com.equals(com); # Compile Error # Runtime Error

com.equals(mrg); # Compile Error # Runtime Error

mrg.equals(com); # Compile Error # Runtime Error

mrg.equals(mrg); # Compile Error # Runtime Error

com.compareTo(com); # Compile Error # Runtime Error

com.compareTo(mrg); # Compile Error # Runtime Error

mrg.compareTo(com); # Compile Error # Runtime Error

mrg.compareTo(mrg); # Compile Error # Runtime Error

((Commit) com).compareTo(com); # Compile Error # Runtime Error

}

}

2

Name:

4. Runtime Analysis For each problem, give the best and worst-case runtimes in Θ(·) notation as a
function of N . Your answer should be simple with no unnecessary leading constants or summations.

Recall that the || (boolean or) operator short-circuits and stops after evaluating the first true value.

Don’t spend too much time on these!

(a) (1 pt) removeIndex Best Case: Θ() Worst Case: Θ()

public static void removeIndex(int[] arr, int i) {

// Assume i > 0

int N = arr.length;

for (int j = i; j < N; j += 1) {

arr[j - 1] = arr[j];

}

}

(b) (2 pts) recurse Best Case: Θ() Worst Case: Θ()

public static int recurse(int N) {

return helper(N, N / 2);

}

private static int helper(int N, int M) {

if (N <= 1) {

return N;

}

for (int i = 1; i < M; i *= 2) {

System.out.println(i);

}

return helper(N - 1, M) + helper(N - 1, M);

}

(c) (2 pts) find Best Case: Θ() Worst Case: Θ()

public static boolean find(int tgt, int[] arr) {

int N = arr.length;

return find(tgt, arr, 0, N);

}

private static boolean find(int tgt, int[] arr, int lo, int hi) {

if (lo == hi || lo + 1 == hi) {

return arr[lo] == tgt;

}

int mid = (lo + hi) / 2;

for (int i = 0; i < mid; i += 1) {

System.out.println(arr[i]);

}

return arr[mid] == tgt || find(tgt, arr, lo, mid) || find(tgt, arr, mid, hi);

}

3

CS 61BL Midterm 2, Summer 2018

5. Functions & Streams Java language reference sheet can be found on the last page of the exam.

(a) (2 pts) Implement odds which returns a list of only odd integers using a single Java statement,
though it may be split over multiple lines. Use n % 2 == 1 to check if a number, n, is odd.

List<Integer> odds(List<Integer> values) {

return values.stream()

;

}

(b) (2 pts) Implement MapFunction, a class of type Function which takes a Map<K, V> and a default
value of type V. apply returns the value associated with the key in the map if the key is in the
map, otherwise it returns the valueIfNotFound. Make sure to fill in the generic types in the
class and method declaration, or leave them blank if they’re not necessary.

public class MapFunction implements {

private final Map<K, V> map;

private final V valueIfNotFound;

public MapFunction(Map<K, V> m, V v) {

map = m;

valueIfNotFound = v;

}

public apply() {

if () {

return ;

} else {

return valueIfNotFound;

}

}

}

(c) (2 pts) Implement mapThenReLU, which first applies a new MapFunction (using the map and
default value given in the arguments) and then applies the relu operator, where relu(x) =
Math.max(0, x), to each value in the stream. Assume that MapFunction is correctly implemented.

Stream<Double> mapThenReLU(Stream<Double> data, Map<Double, Double> m, Double v) {

return data

;

}

4

Name:

6. (4 pts) Iterators Implement CharIterator, an iterator which takes a String[]. Calls to next

return the next character in each string in order, from the first character of the first string all the
way to the last character of the last string. For a CharIterator({"hi", "ya"}), calling next will
first return 'h', then 'i', then 'y', then 'a'. The behavior for subsequent calls to next is undefined.

public class CharIterator implements {

String[] strings; int sIndex; char[] word; int wIndex;

public CharIterator(String[] input) {

strings = input;

if (strings != null && strings.length > 0) {

word = strings[0].toCharArray();

sIndex = wIndex = 0;

} else {

word = null;

}

}

public boolean hasNext() {

return

;

}

public next() {

if () {

;

;

return ;

} else {

;

;

;

return next();

}

}

}

5

CS 61BL Midterm 2, Summer 2018

7. Disjoint Sets In this problem, we will analyze a simplified implementation of path compression
called path halving. In the find method for a weighted quick-union with path halving, instead
of making every node on the path point to the root, we halve the path length by making every other
node in the path point to its grandparent. The parent function will always return the parent

or the root, never the size. Consider the find implementation below.

public int find(int p) {

if (p < 0 || p >= data.length) {

throw new IllegalArgumentException("Invalid vertex: " + p);

}

while (p != parent(p)) {

data[p] = parent(parent(p)); // path halving

p = parent(p);

}

return p;

}

(a) (1 pt) Give the best and worst-case runtimes for find in Θ(·) notation as a function of N , the
total size of the disjoint sets data structure.

Best Case: Θ() Worst Case: Θ()

(b) (1 pt) Consider a weighted quick-union with path quartering. Suppose we replace the
line marked, path halving, with data[p] = parent(parent(parent(parent(p)))). Give the
best and worst-case runtimes for find in Θ(·) notation as a function of N .

Best Case: Θ() Worst Case: Θ()

(c) (1 pt) A fully-connected disjoint sets object is one in which connected returns true for any
arguments, due to prior calls to union. The height is the number of links from the root to the
deepest leaf, so a tree with 1 element has a height of 0. Give the least and greatest-possible
height for a fully-connected weighted quick union with path halving with 9 items.
Give an exact value; do not use asymptotic notation.

Least Height: Greatest Height:

(d) (1 pt) Give the best and worst-case height for a fully-connected weighted quick union with

path quartering with 15 items.
Give an exact value; do not use asymptotic notation.

Least Height: Greatest Height:

8. (0 pts) PNH Which daimyō is believed to have been one of the first Japanese to eat ramen?

6

Abstract Interface Reference

public interface Map<K, V> {

boolean containsKey(Object key);

boolean containsValue(Object value);

V get(Object key);

V put(K key, V value);

V remove(Object key);

}

Function Reference

public interface Function<T, R> {

R apply(T t);

}

public interface Predicate<T> {

boolean test(T t);

}

public interface BinaryOperator<T> extends BiFunction<T, T, T> { ... }

public interface BiFunction<T, U, R> {

R apply(T t, U u);

}

public interface Consumer<T> {

void accept(T t);

}

public interface Comparator<T> {

int compare(T o1, T o2);

}

Stream Reference

public interface Stream<T> {

Stream<T> filter(Predicate<? super T> predicate);

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

Stream<T> sorted(Comparator<? super T> comparator);

void forEach(Consumer<? super T> action);

Optional<T> reduce(BinaryOperator<T> accumulator);

<R, A> R collect(Collector<? super T, A, R> collector);

}

public class Collectors {

static <T> Collector<T, ?, List<T>> toList() { ... }

}

public class Optional<T> {

T get() { ... }

T orElse(T other) { ... }

}

