Problem 1 (20 pts.)

(a) We use the linear expansion formula

$$
\begin{align*}
\Delta d & =\alpha d \Delta T \tag{1}\\
4 \cdot 10^{-3} \mathrm{~cm} & =\left(20 \cdot 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right) \Delta T \tag{2}\\
\Delta T & =50^{\circ} \mathrm{C} \tag{3}
\end{align*}
$$

Taking room temperature to be about $25^{\circ} \mathrm{C}$, we need a final temperature of $75^{\circ} \mathrm{C}$
(b) We use the volume expansion formula

$$
\begin{align*}
\frac{V^{\prime}}{V} & =1+3 \alpha \Delta T \tag{4}\\
& =1+3 \cdot 10^{-3} \tag{5}
\end{align*}
$$

Problem 2

(a) If we look at the motion of a gas particle moving only in the x -direction, the time between collisions is given by

$$
\begin{equation*}
\Delta t=\frac{2 L}{v_{x}} \tag{6}
\end{equation*}
$$

(b) The average force F_{x} on one of the walls considered in part (a) is given by

$$
\begin{equation*}
F_{x}=\frac{\Delta \bar{p}_{x}}{\Delta t}=\frac{2 \bar{p}_{x} \bar{v}_{x}}{2 L}=\frac{m \bar{v}_{x}^{2}}{L} \tag{7}
\end{equation*}
$$

using the fact that the directions are all isotropic, we have $\overline{v^{2}}=\overline{v_{x}^{2}}+\overline{v_{y}^{2}}=2 \overline{v_{x}^{2}}$, so

$$
\begin{equation*}
F=\Sigma F_{x}=\frac{m N \overline{v^{2}}}{2 L} \tag{8}
\end{equation*}
$$

(c) Using the equipartition theorem, we know that

$$
\begin{equation*}
K=\frac{2}{2} k_{B} T \tag{9}
\end{equation*}
$$

since each gas particle has 3 degrees of freedom. Using $K=\frac{1}{2} m \overline{v^{2}}$,

$$
\begin{equation*}
\overline{v^{2}}=2 \frac{k_{B} T}{m} \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
F=\frac{N k_{B} T}{L} \tag{11}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{F}{L} L^{2}=P^{*} A=N k_{B} T \tag{12}
\end{equation*}
$$

Problem 3

(a) First, we note that

$$
\begin{align*}
P_{a} V_{a} & =P_{b} V_{b} \tag{13}\\
P_{c} V_{c}^{\gamma} & =P_{b} V_{b}^{\gamma} \tag{14}
\end{align*}
$$

so that

$$
\begin{gather*}
V_{b}=\left(\frac{T_{L}}{T_{H}}\right)^{\frac{1}{\gamma-1}} V_{C} \tag{15}\\
P_{b}=\frac{n R T_{H}}{V_{b}} \tag{16}\\
W_{a b}=n R T_{H} \ln \left(\frac{V_{b}}{V_{a}}\right) \tag{17}\\
W_{c d}=n R T_{L} \ln \left(\frac{V_{d}}{V_{c}}\right) \tag{18}\\
W_{b c}=\frac{3}{2} n R\left(T_{H}-T_{L}\right) \tag{19}\\
Q_{a b}=W_{a b}=n R T_{H} \ln \left(\frac{V_{b}}{V_{a}}\right) \tag{20}\\
Q_{c d}=W_{c d}=n R T_{L} \ln \left(\frac{V_{d}}{V_{c}}\right) \tag{21}\\
Q_{b c}=0 \tag{22}\\
Q_{d a}=\Delta E=\frac{3}{2} n R\left(T_{H}-T_{L}\right) \tag{23}
\end{gather*}
$$

(b) The efficiency is

$$
\begin{align*}
e & =\frac{W}{Q_{i n}} \tag{24}\\
& =1-\frac{Q_{o u t}}{Q_{\text {in }}} \tag{25}\\
& =1-\frac{T_{L}}{T_{H}} \frac{\ln \left(\frac{V_{d}}{V_{c}}\right)}{\frac{3}{2}}\left(1-\frac{T_{L}}{T_{H}}\right)+\ln \left(\frac{V_{b}}{V_{a}}\right) \tag{26}
\end{align*}
$$

This efficiency must be less than the Carnot efficiency
(c)

$$
\begin{align*}
\Delta S_{d a} & =\frac{3}{2} n R \ln \left(\frac{T_{H}}{T_{L}}\right) \tag{27}\\
\Delta S_{a b} & =n R \ln \left(\frac{V_{b}}{V_{a}}\right) \tag{28}\\
\Delta S_{b c} & =0 \tag{29}\\
\Delta S_{c d} & =n R \ln \left(\frac{V_{d}}{V_{c}}\right) \tag{30}
\end{align*}
$$

Problem 4

(a) For free expansion, we have

$$
\begin{align*}
P V & =P_{f} V_{f} \tag{31}\\
P_{f} & =P \frac{V}{V_{f}} \tag{32}
\end{align*}
$$

For adiabatic expansion,

$$
\begin{align*}
P V^{\gamma} & =P_{f} V_{f}^{\gamma} \tag{33}\\
P_{f} & =P\left(\frac{V}{V_{f}}\right)^{\gamma} \tag{34}
\end{align*}
$$

Since $\gamma>1$, we see that free expansion leads to a larger volume
(b) Free expansion:

$$
\begin{equation*}
W=0 \tag{35}
\end{equation*}
$$

Adiabatic:

$$
\begin{align*}
W & =\int P d V=P V^{\gamma} \int \frac{d V^{\prime}}{V^{\prime \gamma}} \tag{36}\\
& =P V^{\gamma} \frac{V_{f}^{1-\gamma}-V^{1-\gamma}}{1-\gamma} \tag{37}
\end{align*}
$$

(c) Free expansion:

$$
\begin{equation*}
\Delta U=0 \tag{38}
\end{equation*}
$$

Adiabatic:

$$
\begin{equation*}
\Delta U=-\int d W=-P V^{\gamma} \frac{V_{f}^{1-\gamma}-V^{1-\gamma}}{1-\gamma} \tag{39}
\end{equation*}
$$

(d) Free expansion:

$$
\begin{equation*}
\Delta S=n R \ln \left(\frac{V_{f}}{V_{i}}\right) \tag{40}
\end{equation*}
$$

Adiabatic:

$$
\begin{equation*}
\Delta S=0 \tag{41}
\end{equation*}
$$

Problem 5

(a) Since the ice does not melt, the heat enetering the middle region must be equal to the heat leaving the mieddle region. Thus we need

$$
\begin{align*}
\frac{Q_{\text {wood }}}{\Delta t} & =\frac{Q_{\text {glass }}}{\Delta t} \tag{42}\\
\frac{k_{w} A}{l}\left(T_{B}-T_{\text {water }}\right) & =\frac{k_{g} A}{l}\left(T_{\text {water }}-T_{L}\right) \tag{43}\\
T_{B} & =-\frac{k_{g}}{k_{w}} T_{L} \tag{44}
\end{align*}
$$

where we have used $T_{\text {water }}=0^{\circ} \mathrm{C}$.
(b) We need the total heat delivered to the ice to be equal to the energy required to melt the ice:

$$
\begin{equation*}
Q_{\text {wood }}+Q_{\text {glass }}=m_{\text {ice }} L_{i c e} \tag{45}
\end{equation*}
$$

or

$$
\begin{align*}
\frac{m_{\text {ice }} L_{i c e}}{\Delta t} & =\frac{Q_{\text {wood }}+Q_{\text {glass }}}{\Delta t} \tag{46}\\
& =\frac{k_{w} A}{l} T_{B}+\frac{k_{g} A}{l} T_{L} \tag{47}\\
& =-\frac{k_{g} A}{l} T_{L} \tag{48}
\end{align*}
$$

where we have used $T_{B}=-2 \frac{k_{g}}{k_{w}} T_{L}$ for this problem. Thus we have

$$
\begin{equation*}
\Delta t=\frac{m_{i c e} L_{i c e} l}{k_{g} A T_{L}} \tag{49}
\end{equation*}
$$

