MATH 185 LECTURE 4 FINAL EXAM SOLUTIONS

FALL 2017

Name: \qquad

Exam policies:

- Please write your name on each page.
- Closed book, closed notes, no external resources, individual work.
- Be sure to justify any yes/no answers with computations and/or by appealing to the relevant theorems. One word answers will not receive full credit.
- The usual expectations and policies concerning academic integrity apply.
- You may use any theorem proved in class unless the problem states otherwise.
- Since there are several slightly different conventions for the "Cayley transform", write down the map explicitly whenever you need it in conformal mapping problems.
(1) (20 points, 5 each) Prove or disprove each of the following statements.
(a) If γ is a smooth closed curve in $\mathbb{C} \backslash\{0\}$, then

$$
\int_{\gamma} \frac{1}{z^{4}} d z=0
$$

(b) If $f_{n}: \Omega \rightarrow \mathbb{C}$ is a sequence of holomorphic functions which converges to $f: \Omega \rightarrow \mathbb{C}$ uniformly on each compact subset $K \subset \mathbb{C}$, then f must be holomorphic.
(c) The half plane $\{z: \operatorname{Re}(z)>\operatorname{Im}(z)\}$ is conformally equivalent to the half-strip $\{z$: $\operatorname{Re}(z)<0,0<\operatorname{Im}(z)<1\}$. Either construct a suitable conformal map (do not appeal to the Riemann mapping theorem) or prove that no such map exists.
(d) The half plane $\{z: \operatorname{Re}(z)>\operatorname{Im}(z)\}$ is conformally equivalent to \mathbb{C}. (Same remark as before.)

Solution. (a) True. The function $f(z)=\frac{1}{z^{4}}$ has a primitive $F(z)=-\frac{1}{3 z^{3}}$ in $\mathbb{C} \backslash\{0\}$, so the integral of f over any closed curve is zero by the fundamental theorem of calculus.
(b) True. It suffices to prove that f is holomorphic on each disc D whose closure \bar{D} is contained in Ω. This follows from Morera's theorem: if $T \subset D$ is an oriented triangle, then by Cauchy-Goursat and the fact that $f_{n} \rightarrow f$ uniformly on T,

$$
\int_{T} f d z=\lim _{n \rightarrow \infty} \int_{T} f_{n} d z=0
$$

(c) True. We can map the half strip $\Omega=\{z: \operatorname{Re}(z)<0,|\operatorname{Im}(z)|<1\}$ to the half plane $\{z: \operatorname{Re}(z)>\operatorname{Im}(z)\}$ as follows. First apply $z \mapsto \exp (\pi z)$ to obtain the upper half disc, then apply the FLT $z \mapsto \frac{1+z}{1-z}$ to map the upper half disc to the first quadrant, then apply $z \mapsto e^{-3 \pi i / 4} z^{2}$ to obtain the half plane $\{\operatorname{Re}(z)>\operatorname{Im}(z)\}$.
[TODO: picture]
(d) False. If $f: \mathbb{C} \backslash\{z: \operatorname{Re}(z)>\operatorname{Im}(z)\}$ is a conformal equivalence, then $i \notin \overline{f(\mathbb{C})}$, so $g(z)=\frac{1}{f(z)-i}$ is bounded and entire. By Liouville's theorem, g is constant and nonzero, so $f(z)-i$ is constant.
(2) (10 points) Consider a function $f: \mathbb{R} \rightarrow \mathbb{C}$ defined by $f(\theta)=a_{0}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta}+a_{3} e^{3 i \theta}$, where $\theta \in \mathbb{R}$ and $a_{j} \in \mathbb{C}$ with $a_{3} \neq 0$. Prove that there exists $\theta \in \mathbb{R}$ such that $|f(\theta)|>\left|a_{0}\right|$. [Hint: relate f to a suitable function of a complex variable.]
Solution. The problem is equivalent to showing that if $F(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$ for $z \in \mathbb{C}$, then there exists z^{*} with $\left|z^{*}\right|=1$ such that $\left|F\left(z^{*}\right)\right|>\left|a_{0}\right|$, as the required θ is then obtained by writing $z^{*}=e^{i \theta}$ in polar form.

But since $|F(0)|=\left|a_{0}\right|$ and F is not constant (as $a_{3} \neq 0$), the maximum modulus principle implies that $\sup _{|z| \leq 1}|F(z)|=\sup _{|z|=1}|F(z)|>\left|a_{0}\right|$.
(3) (10 points)
(a) (5 points) Determine the radius of convergence of the power series

$$
\sum_{k=1}^{\infty} k^{2} \cos \left(\frac{k \pi}{2}\right) z^{k} .
$$

(b) (5 points) Determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(-1)}{n!}(z+1)^{n}, \text { where } f(z)=\frac{z^{3}+8}{(z+2)\left(z^{2}+4\right)}
$$

Solution. (a) We apply Hadamard's formula: if R is the radius of convergence of the power series $\sum_{n} a_{n} z^{n}$, then $R^{-1}=\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$. Since

$$
\limsup _{k \rightarrow \infty}\left|k^{2} \cos \left(\frac{k \pi}{2}\right)\right|^{1 / k}=\limsup _{k \rightarrow \infty} k^{2 / k}=\limsup _{k \rightarrow \infty} e^{\frac{2 \log k}{k}}=1,
$$

where in the second inequality we use the fact that $\left|\cos \left(\frac{k \pi}{2}\right)\right|=1$ for all k even, it follows that the radius of convergence is 1 .
(b) Writing

$$
f(z)=\frac{(z+2)\left(z-2 e^{i \pi / 3}\right)\left(z-2 e^{5 \pi i / 3}\right)}{(z+2)(z+2 i)(z-2 i)}
$$

we see that f has an analytic continuation to $z=-2$ given explicitly by

$$
F(z)=\frac{\left(z-2 e^{i \pi / 3}\right)\left(z-2 e^{5 \pi i / 3}\right)}{(z+2 i)(z-2 i)},
$$

which is analytic on every disc $D_{r}(1)$ which does not contain $\pm 2 i$. On the other hand, $\lim _{z \rightarrow \pm 2 i}|F(z)|=\infty$ so F has no analytic continuation to any $D_{r}(-1)$ which contains ± 2. Therefore the radius of convergence of the power series, which is also the power series for $F(z)$, is $| \pm 2 i+1|=\sqrt{5}$.
(4) (10 points) Determine the poles, their orders, and the residues of the function

$$
f(z)=\frac{z}{e^{z}-1}
$$

[Hint: Taylor expansion may help with some computations.]
Solution. The function $g(z)=e^{z}-1$ has zeros at $z=2 \pi k$ for each integer k. As $g^{\prime}(2 \pi i k)=$ $e^{2 \pi i k}=1$ is never zero, these zeros are all simple, so for each k we can write $g(z)=$ $(z-2 \pi k)+(z-2 \pi k)^{2} r_{k}(z)$ where $r_{k}(z)$ is holomorphic and nonvanishing at $2 \pi i k$.

Each of the zeros of g is an isolated singularity of f. Since in a neighborhood of 0 we have $f(z)=\frac{z}{z+z r_{0}(z)}=\frac{1}{1+r_{0}(z)}$, the singularity at 0 is removable.

In a neighborhood of $2 \pi i k$ for nonzero k we can write

$$
f(z)=\frac{z}{(z-2 \pi i k)\left[1+(z-2 \pi i k) r_{k}(z)\right]}
$$

So f has a simple pole at $2 \pi i k$, and

$$
\operatorname{Res}(f, 2 \pi i k)=\lim _{z \rightarrow 2 \pi i k}(z-2 \pi i k) f(z)=\lim _{z \rightarrow 2 \pi i k} \frac{z}{1+(z-2 \pi i k) r_{k}(z)}=2 \pi i k
$$

(5) (10 points) Suppose f is entire and satisfies the bound $\left|f\left(2^{-k}\right)\right| \leq 2^{-k^{2}}$ for all positive integers k.
(a) (2 points) Show that $f(0)=0$.
(b) (5 points) Show that in fact $f^{(n)}(0)=0$ for all $n=1,2,3 \ldots$.
(c) (3 points) Prove that $f(z)=0$ for all z.

Solution. (a) By continuity, $f(0)=\lim _{k \rightarrow \infty} f\left(2^{-k}\right)=0$.
(b) Suppose $f^{(n)}(0)$ are not all zero. Let $N>0$ be the smallest integer such that $f^{(N)}(0) \neq$ 0 ; thus 0 is a zero of order N, and we can write $f(z)=z^{N} g(z)$ where g is holomorphic and nonvanishing in a neighborhood of 0 . Then for all k large enough we have

$$
2^{-k^{2}} \geq\left|f\left(2^{-k}\right)\right|=2^{-N k}\left|g\left(2^{-k}\right)\right| \geq 2^{-N k} c
$$

for some positive $c>0$, so

$$
c \leq 2^{N k-k^{2}} .
$$

But since $\lim _{k \rightarrow \infty} N k-k^{2}=-\infty$, the right side of the inequality goes to 0 as $k \rightarrow \infty$, which yields a contradiction.
(c) Since f is entire, its Taylor series expansion at any point converges to $f(z)$ for all z. So $f(z)=\sum_{n} \frac{f^{(n)}(0)}{n!} z^{n}=0$.
(6) (10 points) Find a conformal map from the open region between the two circles $|z-i|=1$ and $|z-4 i|=4$ to the unit disc. You may leave your answer as a composition of explicit "elementary" maps as we have done in class. Please label all relevant geometric quantities (e.g. x or y intercepts of lines, center and radii of circles) in any sketches.

Solution. First apply the inversion $z \mapsto \frac{1}{z}$ to map the point of tangency to ∞. Since

$$
|z-i|^{2}=1 \Leftrightarrow|z|^{2}-i \bar{z}+i z+1=1 \Rightarrow 1-i\left(\frac{1}{z}-\frac{1}{\bar{z}}\right)=0
$$

and

$$
|z-4 i|^{2}=4 \Leftrightarrow|z|^{2}-4 i \bar{z}+4 i z+16=16 \Rightarrow 1-4 i\left(\frac{1}{z}-\frac{1}{\bar{z}}\right)=0
$$

the image of the circles $|z-i|=1$ and $|z-4 i|=4$ under the map $w=\frac{1}{z}$ satisfy the equations

$$
1+2 \operatorname{Im}(w)=0, \quad 1+8 \operatorname{Im}(w)=0
$$

respectively. Thus the region between the circles is mapped to the strip

$$
\left\{-\frac{1}{2}<\operatorname{Im}(w)<-\frac{1}{8}\right\}
$$

The map $z \mapsto \frac{8 \pi}{3}\left(z+\frac{1}{2} i\right)$ takes this strip to the horizontal strip

$$
\{0<\operatorname{Im}(z)<\pi\}
$$

whereupon applying $\exp (z)$ followed by the Cayley transform $z \mapsto \frac{z-i}{z+i}$ maps this to the unit disc.

Summing up, the composition $f_{4} \circ f_{3} \circ f_{2} \circ f_{1}$, where

$$
f_{1}(z)=\frac{1}{z}, f_{2}(z)=\frac{8 \pi i}{3}\left(z+\frac{1}{2}\right), f_{3}(z)=\exp (z), f_{4}(z)=\frac{z-i}{z+i}
$$

maps the region between the two circles to the unit disc.
(7) (10 points) Determine the number of zeros of the function $p(z)=z^{7}-4 z^{2}+15 z-8 i$ in the annulus $\{1<|z|<2\}$.
Solution. On the circle $|z|=2$, we compare p to the function $q_{1}(z)=z^{7}$:

$$
\left|p(z)-q_{1}(z)\right| \leq\left|-4 z^{2}+15 z-8 i\right| \leq 4(2)^{2}+15(2)+8=54<|z|^{7}=128 .
$$

By Rouche's theorem, p has 7 zeros in the disc $|z|<2$.
On $|z|=1$, compare p instead to the function $q_{2}(z)=15 z$:

$$
\left|p(z)-q_{2}(z)\right| \leq\left|z^{7}-4 z^{2}-8 i\right| \leq 1+4+8<15=|15 z| .
$$

Rouche implies that p has 1 zero in $|z|<1$, and the above inequality implies that p does not vanish on $|z|=1$.

Consequently p has 6 zeros in the region $\{1<|z|<2\}$.
(8) (10 points) Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+\cos (\theta)}
$$

Solution. Make the subtitution $\cos (\theta)=\frac{1}{2}\left(z+z^{-1}\right), z=e^{i \theta}, \frac{d z}{i z}=d \theta$, to write

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+\cos (\theta)}=\int_{|z|=1} \frac{1}{3+\frac{z+z^{-1}}{2}} \cdot \frac{1}{i z} d z=\frac{2}{i} \int_{|z|=1} \frac{1}{z^{2}+6 z+1} d z
$$

The integrand has simple poles at $z_{ \pm}=\frac{-6 \pm \sqrt{32}}{2}=-3 \pm \sqrt{8}$; only $z_{+}=-\frac{1}{3+\sqrt{8}}$ lies inside the unit disc, and

$$
\operatorname{Res}\left(\frac{1}{z^{2}+6 z+1}, z_{+}\right)=\lim _{z \rightarrow z_{+}} \frac{1}{z-z_{-}}=\frac{1}{z_{+}-z_{-}}=\frac{1}{2 \sqrt{8}}
$$

Consequently, the integral equals

$$
\frac{2}{i} \cdot 2 \pi i \operatorname{Res}\left(\frac{1}{z^{2}+6 z+1}, z_{+}\right)=\frac{\pi}{\sqrt{2}}
$$

(9) (10 points) Let $t>0$ be a positive number. Using the residue theorem, evaluate

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{\gamma_{R}} \frac{e^{s t}}{s^{2}+1} d s
$$

where $\gamma_{R}=[1-i R, 1+i R]$ is the line from $1-i R$ to $1+i R$. [Hint: to decide how to introduce an additional curve obtain a closed contour, pay attention to where the integrand is small and where it is large, keeping in mind that $t>0$, so that you can estimate the integral over that curve in the limit as $R \rightarrow \infty$.]

Solution. Let $\Gamma_{R}=\gamma_{R}+C_{R}$ be the boundary of the left half disc of radius R centered at 1 ; thus C_{R} is the semicircular arc defined by $|s-1|=R, \operatorname{Re}(s) \leq 1$.

On one hand, we evaluate

$$
\frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{e^{s t}}{s^{2}+1} d s
$$

by the residue theorem. The integrand $f(s)=\frac{e^{s t}}{(s-i)(s+i)}$ has simple poles at $s= \pm i$, and

$$
\operatorname{Res}(f, i)=\lim _{s \rightarrow i} \frac{e^{s t}}{s+i}=\frac{e^{i t}}{2 i}, \quad \operatorname{Res}(f,-i)=\lim _{s \rightarrow-i} \frac{e^{s t}}{s-i}=-\frac{e^{-i t}}{i}
$$

Therefore

$$
\frac{1}{2 \pi i} \int_{\Gamma_{R}} f(s) d s=\frac{e^{i t}-e^{-i t}}{2 i}=\sin (t) .
$$

On the other hand,

$$
\int_{\Gamma_{R}} f(s) d s=\int_{\gamma_{R}} f(s) d s+\int_{C_{R}} f(s) d s
$$

and since $\left|e^{s t}\right|=\left|e^{t \operatorname{Re}(s)} e^{i t \operatorname{Im}(s)}\right| \leq e^{t}$ is bounded on C_{R} uniformly in R,

$$
\left|\int_{C_{R}} f(s) d s\right| \leq \pi R \sup _{s \in C_{R}}\left|\frac{e^{s t}}{s^{2}+1}\right| \leq \pi R e^{t} \sup _{s \in C_{R}} \frac{1}{\left.| | s\right|^{2}-1 \mid} \leq \frac{\pi R e^{t}}{(R-1)^{2}-1},
$$

where the last inequality follows from the observation that $|s-1|=R$ implies $|s| \geq R-1$. Consequently the integral over C_{R} goes to 0 as $R \rightarrow \infty$, and we conclude that

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{\gamma_{R}} f(s) d s=\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} f(s) d s=\sin (t)
$$

Extra page for work

Extra page for work

