
MATH 185 LECTURE 4 FINAL EXAM SOLUTIONS

FALL 2017

Name:

Exam policies:

• Please write your name on each page.
• Closed book, closed notes, no external resources, individual work.
• Be sure to justify any yes/no answers with computations and/or by appealing to the relevant

theorems. One word answers will not receive full credit.
• The usual expectations and policies concerning academic integrity apply.
• You may use any theorem proved in class unless the problem states otherwise.
• Since there are several slightly different conventions for the “Cayley transform”, write down

the map explicitly whenever you need it in conformal mapping problems.
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(1) (20 points, 5 each) Prove or disprove each of the following statements.
(a) If γ is a smooth closed curve in C \ {0}, then∫

γ

1

z4
dz = 0

(b) If fn : Ω → C is a sequence of holomorphic functions which converges to f : Ω → C
uniformly on each compact subset K ⊂ C, then f must be holomorphic.

(c) The half plane {z : Re(z) > Im(z)} is conformally equivalent to the half-strip {z :
Re(z) < 0, 0 < Im(z) < 1}. Either construct a suitable conformal map (do not appeal
to the Riemann mapping theorem) or prove that no such map exists.

(d) The half plane {z : Re(z) > Im(z)} is conformally equivalent to C. (Same remark as
before.)

Solution. (a) True. The function f(z) = 1
z4

has a primitive F (z) = − 1
3z3

in C \ {0}, so
the integral of f over any closed curve is zero by the fundamental theorem of calculus.

(b) True. It suffices to prove that f is holomorphic on each disc D whose closure D is
contained in Ω. This follows from Morera’s theorem: if T ⊂ D is an oriented triangle,
then by Cauchy-Goursat and the fact that fn → f uniformly on T ,∫

T
f dz = lim

n→∞

∫
T
fn dz = 0.

(c) True. We can map the half strip Ω = {z : Re(z) < 0, | Im(z)| < 1} to the half plane
{z : Re(z) > Im(z)} as follows. First apply z 7→ exp(πz) to obtain the upper half disc,
then apply the FLT z 7→ 1+z

1−z to map the upper half disc to the first quadrant, then

apply z 7→ e−3πi/4z2 to obtain the half plane {Re(z) > Im(z)}.
[TODO: picture]

(d) False. If f : C \ {z : Re(z) > Im(z)} is a conformal equivalence, then i /∈ f(C), so
g(z) = 1

f(z)−i is bounded and entire. By Liouville’s theorem, g is constant and nonzero,

so f(z)− i is constant.
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(2) (10 points) Consider a function f : R → C defined by f(θ) = a0 + a1e
iθ + a2e

2iθ + a3e
3iθ,

where θ ∈ R and aj ∈ C with a3 6= 0. Prove that there exists θ ∈ R such that |f(θ)| > |a0|.
[Hint: relate f to a suitable function of a complex variable.]

Solution. The problem is equivalent to showing that if F (z) = a0 + a1z + a2z
2 + a3z

3 for
z ∈ C, then there exists z∗ with |z∗| = 1 such that |F (z∗)| > |a0|, as the required θ is then
obtained by writing z∗ = eiθ in polar form.

But since |F (0)| = |a0| and F is not constant (as a3 6= 0), the maximum modulus principle
implies that sup|z|≤1 |F (z)| = sup|z|=1 |F (z)| > |a0|.



4 FALL 2017

(3) (10 points)
(a) (5 points) Determine the radius of convergence of the power series

∞∑
k=1

k2 cos
(kπ

2

)
zk.

(b) (5 points) Determine the radius of convergence of the power series
∞∑
n=0

f (n)(−1)

n!
(z + 1)n, where f(z) =

z3 + 8

(z + 2)(z2 + 4)
.

Solution. (a) We apply Hadamard’s formula: if R is the radius of convergence of the

power series
∑

n anz
n, then R−1 = lim supn→∞ |an|1/n.. Since

lim sup
k→∞

∣∣∣k2 cos
(kπ

2

)
|1/k = lim sup

k→∞
k2/k = lim sup

k→∞
e

2 log k
k = 1,

where in the second inequality we use the fact that | cos(kπ2 )| = 1 for all k even, it
follows that the radius of convergence is 1.

(b) Writing

f(z) =
(z + 2)(z − 2eiπ/3)(z − 2e5πi/3)

(z + 2)(z + 2i)(z − 2i)
,

we see that f has an analytic continuation to z = −2 given explicitly by

F (z) =
(z − 2eiπ/3)(z − 2e5πi/3)

(z + 2i)(z − 2i)
,

which is analytic on every disc Dr(1) which does not contain ±2i. On the other hand,
limz→±2i |F (z)| =∞ so F has no analytic continuation to any Dr(−1) which contains
±2i. Therefore the radius of convergence of the power series, which is also the power
series for F (z), is | ± 2i+ 1| =

√
5.
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(4) (10 points) Determine the poles, their orders, and the residues of the function

f(z) =
z

ez − 1
.

[Hint: Taylor expansion may help with some computations.]

Solution. The function g(z) = ez−1 has zeros at z = 2πk for each integer k. As g′(2πik) =
e2πik = 1 is never zero, these zeros are all simple, so for each k we can write g(z) =
(z − 2πk) + (z − 2πk)2rk(z) where rk(z) is holomorphic and nonvanishing at 2πik.

Each of the zeros of g is an isolated singularity of f . Since in a neighborhood of 0 we
have f(z) = z

z+zr0(z) = 1
1+r0(z) , the singularity at 0 is removable.

In a neighborhood of 2πik for nonzero k we can write

f(z) =
z

(z − 2πik)[1 + (z − 2πik)rk(z)]
,

So f has a simple pole at 2πik, and

Res(f, 2πik) = lim
z→2πik

(z − 2πik)f(z) = lim
z→2πik

z

1 + (z − 2πik)rk(z)
= 2πik.
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(5) (10 points) Suppose f is entire and satisfies the bound |f(2−k)| ≤ 2−k
2

for all positive
integers k.
(a) (2 points) Show that f(0) = 0.

(b) (5 points) Show that in fact f (n)(0) = 0 for all n = 1, 2, 3 . . . .
(c) (3 points) Prove that f(z) = 0 for all z.

Solution. (a) By continuity, f(0) = limk→∞ f(2−k) = 0.

(b) Suppose f (n)(0) are not all zero. Let N > 0 be the smallest integer such that f (N)(0) 6=
0; thus 0 is a zero of order N , and we can write f(z) = zNg(z) where g is holomorphic
and nonvanishing in a neighborhood of 0. Then for all k large enough we have

2−k
2 ≥ |f(2−k)| = 2−Nk|g(2−k)| ≥ 2−Nkc

for some positive c > 0, so

c ≤ 2Nk−k
2
.

But since limk→∞Nk− k2 = −∞, the right side of the inequality goes to 0 as k →∞,
which yields a contradiction.

(c) Since f is entire, its Taylor series expansion at any point converges to f(z) for all z.

So f(z) =
∑

n
f (n)(0)
n! zn = 0.
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(6) (10 points) Find a conformal map from the open region between the two circles |z − i| = 1
and |z − 4i| = 4 to the unit disc. You may leave your answer as a composition of explicit
“elementary” maps as we have done in class. Please label all relevant geometric quantities
(e.g. x or y intercepts of lines, center and radii of circles) in any sketches.

Solution. First apply the inversion z 7→ 1
z to map the point of tangency to ∞. Since

|z − i|2 = 1⇔ |z|2 − iz + iz + 1 = 1⇒ 1− i
(1

z
− 1

z

)
= 0,

and

|z − 4i|2 = 4⇔ |z|2 − 4iz + 4iz + 16 = 16⇒ 1− 4i
(1

z
− 1

z

)
= 0,

the image of the circles |z−i| = 1 and |z−4i| = 4 under the map w = 1
z satisfy the equations

1 + 2 Im(w) = 0, 1 + 8 Im(w) = 0,

respectively. Thus the region between the circles is mapped to the strip{
−1

2
< Im(w) < −1

8

}
.

The map z 7→ 8π
3 (z + 1

2 i) takes this strip to the horizontal strip

{0 < Im(z) < π},

whereupon applying exp(z) followed by the Cayley transform z 7→ z−i
z+i maps this to the unit

disc.
Summing up, the composition f4 ◦ f3 ◦ f2 ◦ f1, where

f1(z) =
1

z
, f2(z) =

8πi

3

(
z +

1

2

)
, f3(z) = exp(z), f4(z) =

z − i
z + i

,

maps the region between the two circles to the unit disc.
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(7) (10 points) Determine the number of zeros of the function p(z) = z7− 4z2 + 15z− 8i in the
annulus {1 < |z| < 2}.

Solution. On the circle |z| = 2, we compare p to the function q1(z) = z7:

|p(z)− q1(z)| ≤ | − 4z2 + 15z − 8i| ≤ 4(2)2 + 15(2) + 8 = 54 < |z|7 = 128.

By Rouche’s theorem, p has 7 zeros in the disc |z| < 2.
On |z| = 1, compare p instead to the function q2(z) = 15z:

|p(z)− q2(z)| ≤ |z7 − 4z2 − 8i| ≤ 1 + 4 + 8 < 15 = |15z|.
Rouche implies that p has 1 zero in |z| < 1, and the above inequality implies that p does not
vanish on |z| = 1.

Consequently p has 6 zeros in the region {1 < |z| < 2}.
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(8) (10 points) Evaluate the integral ∫ 2π

0

dθ

3 + cos(θ)
.

Solution. Make the subtitution cos(θ) = 1
2(z + z−1), z = eiθ, dz

iz = dθ, to write∫ 2π

0

dθ

3 + cos(θ)
=

∫
|z|=1

1

3 + z+z−1

2

· 1

iz
dz =

2

i

∫
|z|=1

1

z2 + 6z + 1
dz.

The integrand has simple poles at z± = −6±
√

32
2 = −3 ±

√
8; only z+ = − 1

3+
√

8
lies inside

the unit disc, and

Res
( 1

z2 + 6z + 1
, z+

)
= lim

z→z+

1

z − z−
=

1

z+ − z−
=

1

2
√

8
.

Consequently, the integral equals

2

i
· 2πiRes

( 1

z2 + 6z + 1
, z+

)
=

π√
2
.
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(9) (10 points) Let t > 0 be a positive number. Using the residue theorem, evaluate

lim
R→∞

1

2πi

∫
γR

est

s2 + 1
ds,

where γR = [1 − iR, 1 + iR] is the line from 1 − iR to 1 + iR. [Hint: to decide how to
introduce an additional curve obtain a closed contour, pay attention to where the integrand
is small and where it is large, keeping in mind that t > 0, so that you can estimate the
integral over that curve in the limit as R→∞.]

Solution. Let ΓR = γR + CR be the boundary of the left half disc of radius R centered at
1; thus CR is the semicircular arc defined by |s− 1| = R, Re(s) ≤ 1.

On one hand, we evaluate

1

2πi

∫
ΓR

est

s2 + 1
ds

by the residue theorem. The integrand f(s) = est

(s−i)(s+i) has simple poles at s = ±i, and

Res(f, i) = lim
s→i

est

s+ i
=
eit

2i
, Res(f,−i) = lim

s→−i

est

s− i
= −e

−it

i
.

Therefore

1

2πi

∫
ΓR

f(s) ds =
eit − e−it

2i
= sin(t).

On the other hand, ∫
ΓR

f(s) ds =

∫
γR

f(s) ds+

∫
CR

f(s) ds,

and since |est| = |etRe(s)eit Im(s)| ≤ et is bounded on CR uniformly in R,∣∣∣∫
CR

f(s) ds
∣∣∣ ≤ πR sup

s∈CR

∣∣∣ est

s2 + 1

∣∣∣ ≤ πRet sup
s∈CR

1∣∣|s|2 − 1
∣∣ ≤ πRet

(R− 1)2 − 1
,

where the last inequality follows from the observation that |s− 1| = R implies |s| ≥ R − 1.
Consequently the integral over CR goes to 0 as R→∞, and we conclude that

lim
R→∞

1

2πi

∫
γR

f(s) ds = lim
R→∞

∫
ΓR

f(s) ds = sin(t).
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