MATH 185 LECTURE 4 MIDTERM 2

FALL 2017

Name: \qquad

Exam policies:

- Please write your name on each page.
- Closed book, closed notes, no external resources, individual work.
- Be sure to justify any yes/no answers with computations and/or by appealing to the relevant theorems. One word answers will not receive full credit.
- The usual expectations and policies concerning academic integrity apply.
- All problems are weighted equally.
(1) Let

$$
f(z)=\frac{1}{z^{4}+8 z^{2}+16} .
$$

Determine the poles of f, their orders, and the residue of f at each pole.
Solution. Factoring

$$
f(z)=\frac{1}{(z r+4)^{2}}=\frac{1}{(z-2 i)^{2}(z+2 i)^{2}},
$$

we see that f has double poles (i.e. order 2) at $\pm 2 i$.

$$
\begin{aligned}
\operatorname{Res}(f, 2 i) & =\lim _{z \rightarrow 2 i} \frac{d}{d z}\left[(z-2 i)^{2} f(z)\right]=\lim _{z \rightarrow 2 i}\left[-\frac{2}{(z+2 i)^{3}}\right]=\frac{1}{32 i} \\
\operatorname{Res}(f,-2 i) & =\lim _{z \rightarrow-2 i} \frac{d}{d z}\left[(z+2 i)^{2} f(z)\right]=\lim _{z \rightarrow-2 i}\left[-\frac{2}{(z-2 i)^{3}}\right]=-\frac{1}{32 i} .
\end{aligned}
$$

(2) Evaluate the integral

$$
\int_{0}^{\pi} \frac{1}{4-\sin (2 x)} d x
$$

Solution. Writing $\sin (2 x)=\frac{e^{2 i x}-e^{-2 i x}}{2 i}$, and noting that $\zeta=e^{2 i x}, x \in[0, \pi]$ parametrizes the unit circle, we have

$$
\int_{0}^{\pi} \frac{1}{4-\sin (2 x)} d x=\int_{|\zeta|=1} \frac{1}{4-\frac{\zeta-\zeta^{-1}}{2 i}} \frac{d \zeta}{2 i \zeta}=-\int_{|\zeta|=1} \frac{d \zeta}{\zeta^{2}-8 i \zeta-1} .
$$

The roots of the polynomial $\zeta^{2}-2 i \zeta-1$ are

$$
\zeta=\frac{8 i \pm \sqrt{-64+4}}{2}=(4 \pm \sqrt{15}) i,
$$

and only $(4-\sqrt{15}) i$ is enclosed by the circle $|\zeta|=1$. Therefore, applying the residue theorem (or the Cauchy integral formula) yields

$$
-\int_{|\zeta|=1} \frac{d \zeta}{(\zeta-(4+\sqrt{15}) i)(\zeta-(4-\sqrt{15}) i)}=-2 \pi i \cdot \frac{1}{(4-\sqrt{15}) i-(4+\sqrt{15}) i}=\frac{\pi}{\sqrt{15}} .
$$

(3) Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and satisfies the bound $|f(z)| \geq|z|-10$ for all $z \in \mathbb{C}$. Prove that for each $w \in \mathbb{C}$, there exists a sequence $\left\{z_{n}\right\}_{n} \subset \mathbb{C}$ such that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=w$.

Solution. Suppose this were not the case, so that there exist $w \in \mathbb{C}$ and $\delta>0$ such that $\inf _{z \in \mathbb{C}}|f(z)-w| \geq \delta$. Then $g(z):=\frac{1}{f(z)-w}$ is entire, and $|g(z)| \leq \delta^{-1}$ for all z. Thus by Liouville's theorem, $g(z) \equiv g(0)$ for all $z \in \mathbb{C}$. Since $g(0)=\frac{1}{f(0)-w} \neq 0$, it follows that $f(z)=\frac{1}{g(0)}+w$ is constant, which contradicts the hypothesis that $\lim _{z \rightarrow \infty}|f(z)|=\infty$.
(4) Let $\Omega \subset \mathbb{C}$ be open and $\Gamma \subset \Omega$ be a cycle homologous to zero in Ω. Prove that if $f: \Omega \rightarrow \mathbb{C}$ is holomorphic, then

$$
W_{\Gamma}(z) f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta \text { for all } z \in \Omega \backslash \Gamma .
$$

Solution. Fix $z \in \Omega \backslash \Gamma$. Let $\bar{D}_{\varepsilon}(z) \subset \Omega \backslash \Gamma$ be a small closed disc centered at z which does not intersect Γ. Then the integrand $\zeta \mapsto \frac{f(\zeta)}{\zeta-z}$ is holomorphic on $\Omega \backslash\{z\}$, and the cycle $\Gamma-W_{\Gamma}(z) \partial D_{\varepsilon}$ is nullhomologous in $\Omega \backslash\{z\}$. To see this last claim, note that $W_{\Gamma}(\zeta)=$ $0=W_{\partial D_{\varepsilon}(z)}(\zeta)$ if $\zeta \in \mathbb{C} \backslash\{z\}$, while $W_{\Gamma-W_{\Gamma}(z) \partial D_{\varepsilon}}(z)=W_{\Gamma}(z)-W_{\Gamma}(z) W_{\partial D_{\varepsilon}(z)}(z)=0$. Therefore, by the general Cauchy integral theorem and the Cauchy integral formula for discs,

$$
\begin{aligned}
0 & =\int_{\Gamma-W_{\Gamma}(z) \partial D_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta-z} d \zeta=\int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta-W_{\Gamma}(z) \int_{\partial D_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta-z} d \zeta \\
& =\int_{\Gamma} \frac{f(\zeta)}{\zeta-z}-2 \pi i W_{\Gamma}(z) f(z) .
\end{aligned}
$$

(5) Define $f: \mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$ by $f(z)=\sqrt[3]{z}:=\exp \left(\frac{1}{3} \log (z)\right)$. Let

$$
P_{1}(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(8+8 i)}{n!}(z-8-8 i)^{n}, \quad P_{2}(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(-8-8 i)}{n!}(z+8+8 i)^{n}
$$

Determine the radius of convergence of P_{1} and P_{2}, and compute $P_{1}(-8)+P_{2}(-8)$.
Solution. Since f is holomorphic on the disc $D_{|8+8 i|}(8+8 i)$, the radius of convergence of P_{1} is at least $|8+8 i|=8 \sqrt{2}$. On the other hand, f has no analytic extension to any disc centered at $8+8 i$ which contains 0 , for $\lim _{z \rightarrow 0}\left|f^{\prime}(z)\right|=\lim _{z \rightarrow 0} \frac{1}{3}|z|^{-2 / 3}=\infty$. Thus the radius of convergence of P_{1} is exactly $8 \sqrt{2}$.

For P_{2}, argue similarly with $f_{2}(z):=\exp \left(\frac{1}{3} \log _{(-2 \pi, 0)}(z)\right), z \in \mathbb{C} \backslash[0, \infty)$, which agrees with f in a neighborhood of $-8-8 i$ and is holomorphic on the disc $D_{8 \sqrt{2}}(-8-8 i)$, but has no analytic extension to any larger disc. The radius of convergence is therefore $8 \sqrt{2}$ as well.

