MATH 126 FINAL EXAM

Name: \qquad

Exam policies:

- Closed book, closed notes, no external resources, individual work.
- Please write your name on the exam and on each page you detach.
- Unless stated otherwise, you must justify all answers with computations or by appealing to the relevant theorems.
- You may use any theorem presented in class unless the problem states otherwise.
- The usual expectations and policies concerning academic integrity apply.
- Notation: $\square=\partial_{t}^{2}-\Delta_{x}$.
- Recall Euler's identity: $e^{i \theta}=\cos \theta+i \sin \theta$
(1) For $n=1,2, \ldots$, let $\phi_{n}(x):=\sqrt{2} \sin (n \pi x)$. Show that $\left\{\phi_{n}\right\}_{n}$ are orthonormal with respect to the inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

(\bar{z} denotes complex conjugate).
Solution. Recall that ϕ_{n} are eigenfunctions of $-\partial_{x x}:-\partial_{x x}[\sin (n \pi x)]=n^{2} \pi^{2} \sin (n \pi x)$. Thus when $n \neq m$, we integrate by parts to find

$$
\begin{gathered}
-n^{2} \pi^{2}\left\langle\phi_{n}, \phi_{m}\right\rangle=\left\langle-\partial_{x x} \phi_{n}, \phi_{m}\right\rangle=\left\langle\partial_{x} \phi_{n}, \partial_{x} \phi_{m}\right\rangle=\left\langle\phi_{n},-\partial_{x x} \phi_{m}\right\rangle=-m^{2} \pi^{2}\left\langle\phi_{n}, \phi_{m}\right\rangle \\
\Rightarrow(n-m)\left\langle\phi_{n}, \phi_{m}\right\rangle=0 \\
\Rightarrow\left\langle\phi_{n}, \phi_{m}\right\rangle=0
\end{gathered}
$$

(2) Solve the Schrödinger equation on $(0,1)$ with Dirichlet boundary conditions:

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=0,(t, x) \in(0, \infty) \times(0,1) \\
u(0, x)=4 \sin (\pi x)+\sin (2 \pi x) \\
u(t, 0)=u(t, 1)=0
\end{array}\right.
$$

where $i^{2}=-1$ (your solution will be complex valued). Also compute

$$
\int_{0}^{1}|u(t, x)|^{2} d x
$$

Solution. We first construct solutions in the separated form

$$
u_{1}=p_{1}(t) \sin (\pi x), \quad u_{2}=p_{2}(t) \sin (2 \pi x)
$$

and combine them using linearity. The p_{j} are determined by substituting u_{j} into the equation and using the fact that $\sin (n \pi x)$ are eigenfunctions of $-\partial_{x x}$. The resulting ODEs

$$
\begin{aligned}
& i p_{1}^{\prime}-\pi^{2} p_{1}=0, \quad p_{1}(0)=1 \\
& i p_{2}^{\prime}-4 \pi^{2} p_{2}=0, \quad p_{2}(0)=1
\end{aligned}
$$

yield

$$
p_{1}(t)=e^{-i \pi^{2} t}, p_{2}(t)=e^{-i 4 \pi^{2} t}
$$

so $u_{1}=e^{-i \pi^{2} t} \sin (\pi x), u_{2}=e^{-i 4 \pi^{2} t} \sin (2 \pi x)$, and by linearity the solution to the original problem is

$$
u=4 u_{1}+u_{2}=4 e^{-i \pi^{2} t} \sin (\pi x)+e^{-i 4 \pi^{2} t} \sin (2 \pi x)
$$

Finally, by Problem 1 and the Pythagorean theorem

$$
\int_{0}^{1}|u(t, x)|^{2} d x=\langle u, u\rangle=8+\frac{1}{2}=\frac{17}{2}
$$

(3) Let $m: \mathbb{R}^{3} \rightarrow \mathbb{C}$ be a smooth function and write $m(D)$ for the corresponding Fourier multiplier operator. Show that if there exists $M>0$ such that $|m(\xi)| \leq M$ for all $\xi \in \mathbb{R}^{3}$, then

$$
\left(\int_{\mathbb{R}^{3}}|m(D) u|^{2} d x\right)^{1 / 2} \leq M\left(\int_{\mathbb{R}^{3}}|u|^{2} d x\right)^{1 / 2} \text { for any } u \in \mathcal{S}\left(\mathbb{R}^{3}\right)
$$

Solution. By Plancherel,

$$
\int|m(D) u|^{2} d x=\int|m(\xi) \widehat{u}(\xi)|^{2} d \xi \leq M^{2} \int|\widehat{u}(\xi)|^{2} d \xi=M^{2} \int|u|^{2} d x
$$

(4) Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$.
(a) Show that if u strict subsolution to Laplace's equation in the sense that $-\Delta u<0$ in Ω, then

$$
\begin{equation*}
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u \tag{*}
\end{equation*}
$$

You should clearly state, but need not prove, any facts from calculus that you use.
(b) Show that ${ }^{*}$ holds if u merely satisfies $-\Delta u \leq 0$.

Note: do not just quote the maximum principle; the point here is to prove it.
Solution. If $z_{0} \in \mathbb{R}^{2}$ is a local maximum of a C^{2} function v, then $\Delta v\left(z_{0}\right) \leq 0$.
First we prove the conclusion under the assumption that $-\Delta u<0$. Assume for contradiction that there exists $z_{0} \in \Omega$ such that $u\left(z_{0}\right)>\max _{\partial \Omega}$. Then the $\max _{\bar{\Omega}} u$ is attained at some interior point $z_{*} \in \Omega$. But then $\Delta u\left(z_{0}\right) \leq 0$, contrary to the hypothesis.

Assume now that $-\Delta u \leq 0$. By hypothesis $\Omega \subset\{|x| \leq R\}$ for some R, for each $\varepsilon>0$ let $u_{\varepsilon}=u+\varepsilon^{x_{1}}$. As $\Delta u_{\varepsilon}=\Delta u+\varepsilon e^{x_{1}} \geq \Delta u+e^{-R}>0$, the first part implies that the conclusion holds for each u_{ε}, and since $\max _{\Omega}\left|u_{\varepsilon}-u\right| \leq \varepsilon e^{R} \rightarrow 0$ as $\varepsilon \rightarrow 0$, the equality holds for u as well.
(5) The Laplacian of a function u in spherical coordinates (r, θ, ϕ) is

$$
\Delta u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} u\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} u\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} u
$$

Our coordinate convention here is $(x, y, z)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$. Let $R>1, V_{1}, V_{2}$ be constants, and let Ω be the region between the concentric spheres $r=1$ and $r=R$. Solve the boundary value problem

$$
\left\{\begin{array}{l}
\Delta u=0, \text { in } \Omega, \\
\left.u\right|_{r=1}=V_{1},\left.u\right|_{r=R}=V_{2} .
\end{array}\right.
$$

In a sentence or two, explain briefly why the solution you find is the only solution belonging to $C^{2}(\Omega) \cap C(\bar{\Omega})$.

Solution. Look for solutions of the form $u=R(r)$. Then

$$
0=\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} u\right)
$$

so

$$
R^{\prime}=\frac{A}{r^{2}}, \quad R(r)=B-\frac{A}{r}
$$

Applying the boundary conditions

$$
V_{1}=B-A, \quad V_{2}=B-\frac{A}{R}
$$

so

$$
A=\frac{V_{2}-V_{1}}{1-\frac{1}{R}}, B=V_{1}+A=V_{1}+\frac{V_{2}-V_{1}}{1-\frac{1}{R}}=\frac{V_{2}-\frac{V_{1}}{R}}{1-\frac{1}{R}}
$$

so overall

$$
u=R(r)=\frac{V_{2}-\frac{V_{1}}{R}}{1-\frac{1}{R}}+\left(\frac{V_{1}-V_{2}}{1-\frac{1}{R}}\right) \frac{1}{r}
$$

Uniqueness follows from the uniqueness theorem for Laplace's equation
(6) Consider the conservation law

$$
\left\{\begin{array}{l}
u_{t}+2 u u_{x}=0,(t, x) \in(0, \infty) \times \mathbb{R}, \\
u(0, x)=g(x),
\end{array} \quad g(x)=\left\{\begin{array}{l}
1, x<0 \\
-2, x \geq 0
\end{array}\right.\right.
$$

Compute the characteristics starting from the x axis, and find a weak solution.
Solution. The characteristics satisfy

$$
\begin{cases}\dot{t}=1, & t(0)=0 \\ \dot{x}=2 z, & x(0)=x_{0} \\ \dot{z}=0, & z(0)=g\left(x_{0}\right)\end{cases}
$$

Thus

$$
(t, x, z)=\left(s, x_{0}+2 s g\left(x_{0}\right), g\left(x_{0}\right)\right)
$$

We construct a piecewise constant solution of the form

$$
u(t, x)= \begin{cases}1, & x<\xi(t) \\ -2, & x>\xi(t)\end{cases}
$$

for some smooth curve $x=\xi(t)$ with $\xi(0)=0$. Since u would be a classical solution on either side of the curve, for u to be a weak solution on $(0, \infty) \times \mathbb{R}$ we need only apply the Rankine-Hugoniot condition to determine ξ.

Write the equation as $u_{t}+\left(u^{2}\right)_{x} u=0$. The Rankine-Hugoniot condition then requires

$$
1^{2}-(-2)^{2}=\dot{\xi}(t)(1-(-2))
$$

so $\dot{\xi}=-1$, hence $\xi(t)=-t$.
(7) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x):= \begin{cases}1, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

Evaluate $\lim _{n \rightarrow \infty} n f(n x)$ in the sense of distributions.
Solution. Let ϕ be a test function.

$$
\begin{aligned}
\int n f(n x) \phi(x) d x & =\frac{1}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} \phi(0) d x+\frac{1}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}}[\phi(x)-\phi(0)] d x \\
& =2 \phi(0)+r_{n}
\end{aligned}
$$

where, by the fundamental theorem of calculus

$$
\left|r_{n}\right| \leq \max \left|\phi^{\prime}\right| \int_{-\frac{1}{n}}^{\frac{1}{n}} \frac{|x|}{n} d x \leq \frac{C}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Consequently

$$
\lim _{n \rightarrow \infty} \int n f(n x) \phi(x) d x=2 \phi(0)
$$

in other words, $n f(n x)$ converges in distribution to $2 \delta_{0}$.
(8) Suppose u solves $\square u=0$ for $(t, x) \in(0, \infty) \times \mathbb{R}^{2}$, and that

$$
\int_{|x|>2}\left|\partial_{t} u(0, x)\right|^{2}+\left|\nabla_{x} u(0, x)\right|^{2} d x=0, \quad \lim _{|x| \rightarrow \infty} u(t, x)=0
$$

Describe the largest region in $(0, \infty) \times \mathbb{R}^{2}$ on which u is guaranteed to be zero. You may use formulas and/or a sketch that clearly labels all relevant geometric quantities.

Solution. Since $|\nabla u(0, x)|=0$ for $|x|>2$, by integrating along radial lines from infinity and using the second hypothesis we deduce that $u(0, x)=0, \partial_{t} u(0, x)=0$ when $|x|>2$. By finite speed of propagation, (considering backwards light cones with base in the region $|x|>2$) we conclude that $u \equiv 0$ in the region

$$
\left\{(t, x) \in(0, \infty) \times \mathbb{R}^{2}:|x|>2+t .\right\}
$$

Extra space for work

