MATH 126 MIDTERM EXAM 2

Name: \qquad

Exam policies:

- Closed book, closed notes, no external resources, individual work.
- Please write your name on the exam and on each page you detach.
- Unless stated otherwise, you must justify all answers with computations or by appealing to the relevant theorems.
- You may use any theorem presented in class and the homeworks unless the problem states otherwise.
- The usual expectations and policies concerning academic integrity apply.
- Notation: $\square=\partial_{t}^{2}-\Delta_{x}$
(1) Let u and v be smooth functions such that

$$
\left(-\partial_{t}^{2}+\partial_{x}^{2}\right) u=0 \text { on }(0, \infty)_{t} \times \mathbb{R}_{x}, \quad\left(-\partial_{t}^{2}+\partial_{x}^{2}\right) v=0 \text { on }(0, \infty)_{t} \times \mathbb{R}_{x}
$$

Suppose we know that $u(0, x)=v(0, x)$ and $\partial_{t} u(0, x)=\partial_{t} v(0, x)$ for all $|x| \geq 1$. Sketch the largest region in $\{(t, x) \in[0, \infty) \times \mathbb{R}, t \geq 0\}$ on which u and v are guaranteed to agree. Be sure to describe all relevant geometric quantities (e.g. equations of lines) and justify your answers.

Solution. The function $w:=u-v$ satisfies $\square w=0$ and $w(0, x)=\partial_{t} w(0, x)=0$ for $|x| \geq 1$. By the d'Alembert formula

$$
w(t, x)=\frac{1}{2}(w(0, x-t)+w(0, x+t))+\frac{1}{2} \int_{x-t}^{x+t} \partial_{t} w(0, y) d y
$$

$w=0$ whenever $(x-t, x+t) \cap(-1,1)$ is empty, i.e. whenever $1 \leq x-t$ or $x+t \leq-1$.
(2) Evaluate $\lim _{t \rightarrow \infty} u(t, x)$, where u is the solution to

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=0 \text { in }(0, \infty) \times(0,1) \\
u(0, x)=1-2 \cos (3 \pi x) \\
u_{x}(t, 0)=u_{x}(t, 1)=0 \text { for } t \geq 0
\end{array}\right.
$$

Solution. Since

$$
u(t, x)=1-2 e^{-9 \pi^{2} t} \cos (3 \pi x)
$$

we see that $\lim _{t \rightarrow \infty} u(t, x)=1$ for all x.
(3) Let $\Omega \subset \mathbb{R}^{2}$ be bounded and open with boundary $\partial \Omega$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
-\left(1+y^{2}\right)\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u-x^{2} \partial_{x} u<0 \text { on } \Omega
$$

Prove that

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

You should clearly state, but need not prove, any theorems from calculus that you use.
Solution. Suppose the inequality failed. Then there exists some interior local maximum $\left(x_{0}, y_{0}\right) \in \Omega$ such that $u\left(x_{0}, y_{0}\right)>\max _{\partial \Omega} u$. At this local maximum we have $\partial_{x} u\left(x_{0}, y_{0}\right)=\partial_{y} u\left(x_{0}, y_{0}\right)=0$ and, by the second derivative test, $\partial_{x}^{2} u\left(x_{0}, y_{0}\right) \leq 0$ and $\partial_{y}^{2} u\left(x_{0}, y_{0}\right) \leq 0$. This yields the contradiction

$$
-\left(1+y^{2}\right)\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u\left(x_{0}, y_{0}\right)-x_{0}^{2} \partial_{x} u\left(x_{0}, y_{0}\right) \geq 0
$$

(4) Assume $g: \mathbb{R}^{3} \rightarrow R$ is bounded and continuous, and let $u \in C^{\infty}\left((0,1) \times \mathbb{R}^{3}\right)$ be a bounded solution to the nonlinear heat equation

$$
\begin{cases}\left(\partial_{t}-\Delta\right) u=u^{2}-u^{3} & \text { in }(0,1) \times \mathbb{R}^{3} \\ u(0, x)=g(x) & \text { on }\{t=0\} \times \mathbb{R}^{3}\end{cases}
$$

Find $\varepsilon>0$ such that if $|g(x)| \leq \varepsilon$ for all x, then $|u(t, x)| \leq 2 \varepsilon$ for all $(t, x) \in(0,1) \times \mathbb{R}^{3}$.
Solution. We show that any $\varepsilon \leq \frac{1}{8}$ works.
By hypothesis, there exists $M>0$ such that $|u(t, x)| \leq M$ for all $(t, x) \in[0,1] \times \mathbb{R}^{3}$. Let T be the largest time in $[0,1]$ such that $|u(t, x)| \leq 2 \varepsilon$ for all $(t, x) \in[0, T] \times \mathbb{R}^{3}$. By the Duhamel formula

$$
u(t, x)=\int_{\mathbb{R}^{3}} \Phi(t, x-y) g(y) d y+\int_{0}^{t} \int_{\mathbb{R}^{3}} \Phi(t-s, x-y)\left[u(s, y)^{2}-u(s, y)^{3}\right] d y d x
$$

and the bounds $\left|\int_{\mathbb{R}^{3}} \Phi(t, x-y) g(y) d y\right| \leq \varepsilon \int_{\mathbb{R}^{3}} \Phi(t, x-y) d y \leq \varepsilon$, and similarly for the nonlinear term, we obtain

$$
|u(t, x)| \leq \varepsilon+t\left(M^{2}+M^{3}\right)
$$

and see that $T \geq \frac{\varepsilon}{M^{2}+M^{3}}>0$.
Assume for contradiction that $T<1$. By the Duhamel formula,

$$
|u(T, x)| \leq \varepsilon+(2 \varepsilon)^{2}+(2 \varepsilon)^{3} \leq \varepsilon+4 \varepsilon^{2}+8 \varepsilon^{3} \leq\left(1+\frac{1}{2}+\frac{1}{8}\right) \varepsilon=\left(2-\frac{3}{8}\right) \varepsilon
$$

But we can then apply the Duhamel formula to the equation initialized at time T,
$\left.u(t, x)=\int_{\mathbb{R}^{3}} \Phi(t-T, x-y) u(T, y) d y+\int_{T}^{t} \int_{\mathbb{R}^{3}} \Phi(t-T, x-y)\right)\left[u(s, y)^{2}-u(s, y)^{3}\right] d y d s, t \geq T$,
(note that $v(t, x):=u(t+T, x)$ solves $\left(\partial_{t}-\Delta\right) v=v^{2}-v^{3}$ on $(0,1-T) \times \mathbb{R}^{3}$ with initial data $v(0, x)=u(T, x))$ to deduce that

$$
|u(t, x)| \leq\left(2-\frac{3}{8}\right) \varepsilon+(t-T)\left(M^{2}+M^{3}\right)<2 \varepsilon
$$

whenever $t-T<\frac{3 \varepsilon}{8\left(M^{2}+M^{3}\right)}$, which contradicts the maximality of T.
(5) Let $\Omega \subset \mathbb{R}^{3}$ be a bounded open set with smooth boundary $\partial \Omega$. Suppose u is a smooth function on the cylinder $[0, T] \times \bar{\Omega}$ for some $T>0$ such that $u=0$ on $[0, T] \times \partial \Omega$. Derive the energy estimate

$$
E(t) \leq E(0)+\int_{0}^{t} \int_{\Omega}\left|\partial_{t} u(t, x)\right||\square u(t, x)| d x d s \text { for all } 0 \leq t \leq T
$$

where

$$
E(t)=\frac{1}{2} \int_{\Omega}\left|\partial_{t} u(t, x)\right|^{2}+|\nabla u(t, x)|^{2} d x
$$

Solution.

$$
\begin{aligned}
E^{\prime}(t) & =\int_{\Omega} \partial_{t} u \partial_{t}^{2} u+\left\langle\nabla u, \nabla \partial_{t} u\right\rangle d x \\
& =\int_{\Omega} \partial_{t} u\left(\partial_{t}^{2}-\Delta\right) u d x
\end{aligned}
$$

so by the Fundamental Theorem of Calculus

$$
\begin{aligned}
E(t) & \leq E(0)+\left|\int_{0}^{t} E^{\prime}(s) d s\right| \leq E(0)+\int_{0}^{t}\left|E^{\prime}(s)\right| d s \\
& \leq E(0)+\int_{0}^{t} \int_{\Omega}\left|\partial_{t} u\right||\square u| d x d s
\end{aligned}
$$

