MATH 126 MIDTERM EXAM 1

Name: \qquad

Exam policies:

- Closed book, closed notes, no external resources, individual work.
- Please write your name on the exam and on each page you detach.
- Unless stated otherwise, you must justify all answers with computations or by appealing to the relevant theorems.
- You may use any theorem presented in class unless the problem states otherwise.
- The usual expectations and policies concerning academic integrity apply.
(1) Let $H=\chi_{[0, \infty)}$ be the indicator function of $[0, \infty)$; in other words

$$
H(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Let G be the distribution $\mathcal{D}\left(\mathbb{R}^{2}\right) \ni \phi \mapsto \int_{\mathbb{R}^{2}} H(x-t) \phi(t, x) d x d t$. Evaluate $\left(\partial_{t}+\partial_{x}\right) G$ and $\left(\partial_{x}-\partial_{t}\right) G$.
Solution. For a test function $\phi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$,

$$
\left(\partial_{t}+\partial_{x}\right) G(\phi)=-\int_{\mathbb{R}^{2}} H(x-t)\left(\partial_{t}+\partial_{x}\right) \phi d x d t
$$

We have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} H(x-t) \partial_{t} \phi d x d t=\int_{-\infty}^{\infty} \int_{-\infty}^{x} \partial_{t} \phi(t, x) d t d x=\int_{-\infty}^{\infty} \phi(x, x) d x \\
& \int_{\mathbb{R}^{2}} H(x-t) \partial_{x} \phi d x d t=\int_{-\infty}^{\infty} \int_{t}^{\infty} \partial_{x} \phi d x d t=-\int_{-\infty}^{\infty} \phi(t, t) d t
\end{aligned}
$$

Therefore $\left(\partial_{t}+\partial_{x}\right) G=0$, while

$$
\left(\partial_{x}-\partial_{t}\right) G(\phi)=2 \int_{-\infty}^{\infty} \phi(x, x) d x
$$

(2) Let $u=\frac{1}{2} \chi_{[-1,1]}$, where $\chi_{[-1,1]}$ is the indicator function for the interval $[-1,1]$, and $v(x)=|x|$. Evaluate the convolution $u * v(x)$ for $x \in \mathbb{R}$.
Solution. When $x \in[-1,1]$,

$$
\begin{aligned}
u * v(x)=\frac{1}{2} \int_{-1}^{1}|x-y| d y & =\frac{1}{2}\left(\int_{-1}^{x} x-y d y+\int_{x}^{1} y-x d y\right) \\
& =\frac{1}{2}\left(x(x+1)-\left(\frac{x^{2}-1}{2}\right)+\frac{1-x^{2}}{2}-x(1-x)\right) \\
& =\frac{x^{2}+1}{2}
\end{aligned}
$$

When $x \notin[-1,1]$,

$$
\begin{aligned}
& x>1 \Rightarrow u * v(x)=\frac{1}{2} \int_{-1}^{1} x-y d y=x \\
& x<1 \Rightarrow u * v(x)=\frac{1}{2} \int_{-1}^{1} y-x d y=-x
\end{aligned}
$$

Summing up,

$$
u * v(x)= \begin{cases}|x|, & |x|>1 \\ \frac{x^{2}+1}{2}, & |x|<1\end{cases}
$$

(3) Let $u \in C^{2}\left(\mathbb{R}^{2}\right)$ be a solution to $\Delta u=0$ on \mathbb{R}^{2} such that u is constant on all curves C_{r} of the form

$$
C_{r}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+2 y^{2}=r^{2}\right\}
$$

for all $r>0$. Prove that u is constant on \mathbb{R}^{2}.
Solution. By the maximum principle applied to u and $-u, u$ is constant on each solid ellipse $\Omega_{r}=$ $\left\{(x, y): x^{2}+2 y^{2}<r^{2}\right\}$; indeed

$$
\min _{C_{r}} \leq \min _{\Omega_{r}} u \leq \max _{\Omega_{r}} u \leq \max _{C_{r}} u
$$

and the leftmost and rightmost expressions are equal. Any (x, y) is contained in some Ω_{r}, hence $u(x, y)=u(0,0)$ for all (x, y).
(4) Let $f_{n}(x)=n^{2} \cos (n x)$. Evaluate the limit $\lim _{n \rightarrow \infty} f_{n}$ in the sense of distributions.

Solution. If ϕ is a test function, then repeatedly integrating by parts (on a large interval containing the support of ϕ) we compute

$$
\begin{aligned}
\int_{\mathbb{R}} n^{2} \cos (n x) \phi(x) d x & =-\int_{\mathbb{R}} n \sin (n x) \phi^{\prime}(x) d x=-\int_{\mathbb{R}} \cos (n x) \phi^{\prime \prime}(x) d x \\
& =\frac{1}{n} \int_{\mathbb{R}} \sin (n x) \phi^{(3)}(x) d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

(5) Let $g \in C^{1}(\mathbb{R})$. Using the method of characteristics, solve the initial value problem

$$
\left\{\begin{array}{l}
(1+t) u_{t}+u_{x}=t, \\
u(0, x)=g(x),
\end{array} \quad(t, x) \in(0, \infty) \times \mathbb{R}\right.
$$

Check that the function you derive in terms of g is indeed a solution.
Solution. The characteristics defined by the ODE

$$
\dot{t}=1+t, \quad \dot{x}=1
$$

and initialized to $(t(0), x(0))=\left(0, x_{0}\right)$ are $t=e^{s}-1, x=x_{0}+s$, so $s=\log (1+t), x_{0}=x-\log (1+t)$.
Setting $z(s)=u(t(s), x(s))$, the PDE implies have $\dot{z}(s)=t(s)=e^{s}-1, z(0)=g\left(x_{0}\right)$, so

$$
u(t, x)=z=e^{s}-s-1+g\left(x_{0}\right)=t-\log (1+t)+g(x-\log (1+t))
$$

Indeed

$$
u_{t}=1-\frac{1}{1+t}-\frac{g^{\prime}(x-\log (1+t))}{1+t}, \quad u_{x}=g^{\prime}(x-\log (1+t))
$$

and so

$$
(1+t) u_{t}+u_{x}=t, \quad u(0, x)=g(x)
$$

