MATH 16A MIDTERM 2 (001) 9.10AM - 10AM PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.
CALCULATORS ARE NOT PERMITTED
YOU MAY USE YOUR OWN BLANK
PAPER FOR ROUGH WORK
SO ASNOT TO DISTURB OTHER
STUDENTS, EVERYONE MUST STAY
UNTIL THE EXAM IS COMPLETE
REMEMBER THIS EXAM IS GRADED BY
A HUMAN BEING. WRITE YOUR
COHERLUTIONS NEATLY AND
RECEIVING FULL CREDIT NOT
THIS EXAM WILL BE ELECTRONICALLY
SCANNED.MAKESURE YOU WRITE ALL
SOLUTIONS IN THE SPACES PROVIDED.
YOU MAY WRITE SOLUTIONS ON THE
BLANK PAGE AT THE BACK BUTBBE
SURE TO CLEARLY LABEL THEM

\qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) Calculate the derivatives of the following functions: (You do not need to use the limit definition and you do not need to simplify your answers)
(a)

$$
x e^{x^{2}}
$$

Solution:

$$
\begin{aligned}
& f(x)=u(x) v(x), u(x)=x, v(x)=e^{x^{2}} \Rightarrow u^{\prime}(x)=1, v^{\prime}(x)=e^{x^{2}} \cdot 2 x \\
& \Rightarrow \frac{d}{d x}\left(x e^{x^{2}}\right)=1 \cdot e^{x^{2}}+x e^{x^{2}} \cdot 2 x
\end{aligned}
$$

(b)

$$
\ln \left(\frac{e^{x}}{\sqrt{x^{2}-1}}\right)
$$

Solution:

$$
\begin{aligned}
\ln \left(\frac{e^{x}}{\sqrt{x^{2}-1}}\right) & =\ln \left(e^{x}\right)-\frac{1}{2} \ln \left(x^{2}-1\right) \\
& =x-\frac{1}{2} \ln \left(x^{2}-1\right) \\
\Rightarrow \frac{d}{d x}\left(\ln \left(\frac{e^{x}}{\sqrt{x^{2}-1}}\right)\right) & =1-\frac{1}{2} \cdot \frac{2 x}{x^{2}-1}
\end{aligned}
$$

2. (25 points) A company is selling a product. The demand equation for the product is

$$
p=169-q^{2}
$$

where p is the price per unit and q is the number of units sold.
(a) Determine the elasticity $E(p)$. At what price does demand have unit Solution: elasticity.

$$
\begin{aligned}
& p=169-q^{2} \Rightarrow \frac{1}{169-p} \\
& \Rightarrow \frac{d q}{d p}=\frac{1}{2} \cdot \frac{1}{\sqrt{169-p}} \cdot(-1) \\
& \Rightarrow E(p)=\frac{-p}{q} \cdot \frac{d q}{d p}=\frac{-p}{\sqrt{169-p}} \cdot \frac{-1}{2 \sqrt{169-p}} \\
& =\frac{p}{2(169-p)} \\
& E(p)=1 \Rightarrow \frac{p}{2(169-p)}=1 \Rightarrow 2(169-p) \Rightarrow p=\frac{338}{3}
\end{aligned}
$$

(b) If they are selling 12 units, should they increase or decrease the price to raise revenue? Justify your answer.
Solution:

$$
q=12 \Rightarrow p=169-12^{2}=164-144=25
$$

$E(25)=\frac{25}{2.144}<1 \Rightarrow$ Demand is inelastic at

$$
p=25
$$

\Rightarrow They should micrease the price to raise revenue.
3. (25 points) Find and classify the relative extrema of the following function:

$$
f(x)=x^{2 / 3}-x^{5 / 3}
$$

Be sure to carefully justify your answer.
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2}{3} \cdot \frac{1}{x^{1 / 3}}-\frac{5}{3} x^{2 / 3} \\
& \text { A/ } f^{\prime}(x)=0 \Rightarrow \frac{2}{3} \frac{1}{x^{1 / 3}}=\frac{5}{3} x^{2 / 3} \Rightarrow \frac{2}{5}=x \\
& \text { B/ } 7^{\prime} \text { undefined } \Rightarrow x=0 \\
& f^{\prime}(1)=\frac{2}{3}-\frac{s}{3}<0 \\
& f\left(\frac{1}{8}\right)=\frac{2}{3} \frac{1}{\left(\frac{1}{2}\right)}-\frac{5}{3} \cdot\left(\frac{1}{2}\right)^{2} \\
& \begin{aligned}
f^{\prime}(-1)=\frac{-2}{3}-\frac{5}{3}<0 \quad & \frac{\overline{3}}{\left(\frac{1}{2}\right)}-\frac{5}{3} \cdot(\\
& =\frac{4}{3}-\frac{5}{12}>0
\end{aligned}
\end{aligned}
$$

$\Rightarrow f(0)=0$ is a velative min

$$
f\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{2 / 3}-\left(\frac{2}{3}\right)^{5 / 3} \text { is a reata mar }
$$

4. What is the maximum possible value of $x+6 y$ subject to the condition $x+y^{2}=4$, where x and y are non-negative numbers?
Solution:
Objective: Maximize $x+6 y$
Constraint : $x+y^{2}=4, x-y \geqslant 0$

$$
\begin{aligned}
& x+y^{2}=4 \Rightarrow x=4-y^{2} \Rightarrow x+6 y=\left(4-y^{2}\right)+6 y=f(y) \\
& x, y \geqslant 0 \text { and } x+y^{2}=4 \Rightarrow y \leq 2
\end{aligned}
$$

Domain $=[0,2]$

$$
f^{\prime}(y)=-2 y+6
$$

A/ $7^{\prime}(y)=0 \Rightarrow y=3$
B/ 7^{1} contains evengwherce
$\Rightarrow 0,2$ are only critical number on $[0,2]$

$$
\begin{aligned}
& f(0)=4 \\
& f(2)=12
\end{aligned}
$$

\Rightarrow The maximum possible value of $x+6 y$ is 12 under the condition $x+y^{2}=4$ and $x, y \geqslant 0$
5. Sketch the following curve. If they exist, be sure to indicate, relative maxima and minima and inflection points. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{2}+1}{x}
$$

Solution:

$$
f(x)=\frac{x^{2}+1}{x}=x+\frac{1}{x}
$$

Domain : $\quad x \neq 0$
No x-interapt on y-intercept $\left(x^{2}+1>0\right)$
$\lim _{x \rightarrow \infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} 7(x)=-\infty \Rightarrow$ No horizontal asymptotes
Vertical asymptote at $x=0$

$$
\begin{aligned}
& f(x) \xrightarrow[o d d]{ } . \\
& f^{\prime}(x)=1-\frac{1}{x^{2}}
\end{aligned}
$$

4/ $7^{\prime}(x)=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$
B/ 7^{\prime} undefined $\Rightarrow \quad x=0$

$$
y^{\prime \prime}(x)=\frac{2}{x^{3}}
$$

4) $f^{\prime \prime}(x)=0 \Rightarrow \frac{2}{x^{3}}=0 \quad$ (No solutions)

Solution (continued) :
B/ $7^{\prime \prime}$ andefined when $x=0$
Not inflection (vertical asymperte)

$$
f(1)=2
$$

$$
7(-1)=-2
$$

