MATH 16A MIDTERM 1(001)
 PROFESSOR PAULIN

Name and section: \qquad

GSI's name:
KEVIN BUZZARD

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) Determine the domains of the following functions:
(a)

$$
\sqrt{1-2 x}
$$

Solution:

$$
1-2 x \geqslant 0 \Rightarrow 1 \geqslant 2 x \quad \Rightarrow \quad \frac{1}{2} \geqslant x
$$

$$
\Rightarrow \text { Domain is }\left(-\infty, \frac{1}{2}\right]
$$

(b)

$$
\ln \left(\frac{x+1}{1-x}\right)
$$

Solution:

$$
\begin{aligned}
& x+1>0 \\
& 1-x>0
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x>-1 \\
& 1>x
\end{aligned} \quad \Rightarrow \quad-1<x<1
$$

$x+1<0$
$1-x<0$$\Rightarrow \begin{aligned} & x<-1 \\ & 1<x\end{aligned} \quad \Rightarrow$ No possible values A x
\Rightarrow Dourain is $(-1,1)$
2. (25 points) A product is to be supplied and sold. If the price per unit is 5 dollars the supplier is willing to provide 2 unit. If the price per unit is 9.5 dollars the supplier is willing to provide 5 units. If the price per unit is 7 dollars the demand is 2 units. If the price per unit is less than 6.5 dollars there will be a shortage. If it is more than 6.5 dollars there will be a surplus.
(a) Determine the supply and demand equations. Hint: Determine the supply equation first.
Solution:

Supply: Slope $=\frac{9 \cdot 5-5}{5-2}=\frac{4.5}{3}=\frac{3}{2}$ $\Rightarrow p-5=\frac{3}{2}(q-2)$
$\Rightarrow p=\frac{3}{2 q}+2=S(q)$
$6.5=\frac{3}{2} 9+2 \Rightarrow \frac{3}{2} 9=4.5$ $\Rightarrow 9=3$

Demand : Slope $=\frac{6 \cdot 5-7}{3-2}=-\frac{1}{2}$
$p-7=-\frac{1}{2}(q-2)$
$\Rightarrow p=8-\frac{1}{2} q=D(q)$
(b) At what price per unit will the demand be zero.

Solution:
$D(0)=8 \Rightarrow \$ 8$ and above gives demand zero
3. Calculate the following limits. If they do not exist determine if they are ∞ or $-\infty$.
(a)

$$
\lim _{x \rightarrow-1} \sqrt{\frac{x-3}{x-1}}
$$

Solution:

$$
\lim _{x \rightarrow-1} \sqrt{\frac{x-3}{x-1}}=\sqrt{\frac{-1-3}{-1-1}}=\sqrt{2}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{2 x^{7}+6 x^{3}-x^{2}+3}{-x^{6}+x^{5}+4 x^{3}-x-1}
$$

Solution:

$$
\lim _{x \rightarrow-\infty} \frac{2 x^{7}+6 x^{3}-x^{2}+3}{-x^{6}+x^{5}+4 x^{3}-x-1}=\lim _{x \rightarrow-\infty} \frac{2 x^{7}}{-x^{6}}=\lim _{x \rightarrow-\infty}-2 x=\infty
$$

(c)

$$
\lim _{x \rightarrow 1^{-}} \frac{2-x-x^{2}}{x^{2}-2 x+1}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} \frac{2-x-x^{2}}{x^{2}-2 x+1}=\lim _{x \rightarrow 1^{-}} \frac{-(x+2)(x-1)}{(x-1)(x-1)}=\lim _{x \rightarrow 1^{-}} \frac{-(x+2)}{x-1} \\
& \lim _{x \rightarrow 1^{-}}-(x+2)=-3<0 \\
& x \rightarrow \lim _{x \rightarrow 1^{-}} x-1=0^{-}
\end{aligned}
$$

4. Let $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x}-a}{x-4} & \text { if } x \neq 4 \\ b & \text { if } x=4\end{array}\right.$ for some real numbers a and b.

Find values of a and b such that $f(x)$ continuous at $x=4$? Carefully justify why $f(x)$ is continuous at $x=4$ for these values.
Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \sqrt{x}-a=\sqrt{4}-a=2-a \\
& \lim _{x \rightarrow 4} x-4=4-4=0 \\
& 2-a \neq 0 \Rightarrow \lim _{x \rightarrow 4} \frac{\sqrt{x}-a}{x-4} \text { DNE }
\end{aligned}
$$

$2-a=0 \Rightarrow$ UNCLEAR QUOTIENT

$$
a=2
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
& =\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

$\Rightarrow a=2, b=\frac{1}{4}$ gives a contrinuars function
at $x=4$.
5. Using limits, calculate the derivative of $f(x)=\frac{x^{2}-9}{x^{2}-x-6}$. Are there any points in the graph $y=f(x)$ with horizontal tangent line? Solution:

$$
\begin{aligned}
& \frac{x^{2}-9}{x^{2}-x-6}=\frac{(x+3)(x-3)}{(x-3)(x+2)}=\frac{x+3}{x+2} \\
& \Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{x+h+3}{x+h+2}-\frac{x+3}{x+2}}{h} \\
&= \lim _{h \rightarrow 0} \frac{(x+2)(x+h+3)-(x+3)(x+h+2)}{h(x+2)(x+h+2)} \\
&=\lim _{h \rightarrow 0} \frac{x^{2}+h x+/ 5 x+3 x+2 h+6-x^{2}-x k-2 x-3 x-3 h-8}{h(x+2)(x+h+2)} \\
&= \lim _{h \rightarrow 0} \frac{-1}{(x+2)(x+h+2)} \\
& \Rightarrow f^{\prime}(x)=\frac{-1}{(x+2)^{2}}
\end{aligned}
$$

$f^{\prime}(x)=0 \Rightarrow \frac{-1}{(x+2)^{2}}=0$ which has no solutions.
\Rightarrow There are no horizontal tangent lines
Blamh

BCanh

Beank

