MATH 54 MIDTERM 2 (001)
PROFESSOR PAULIN

| DO NOT TURN OVER UNTIL |
| :---: |
| INSTRUCTED TO DO SO. |

Name and Student ID: $\qquad$
$\qquad$

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let $A=\left(\begin{array}{cccccc}0 & 1 & -1 & 1 & 1 & 3 \\ 0 & -1 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 2 & -2 & 6 \\ 0 & 3 & -3 & 3 & 3 & 8\end{array}\right)$. Calculate bases for $\operatorname{Ker}\left(T_{A}\right)$ and Range $\left(T_{A}\right)$.
Solution:
$\left(\begin{array}{cccccc}0 & 1 & -1 & 1 & 1 & 3 \\ 0 & -1 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 2 & -2 & 6 \\ 0 & 3 & -3 & 3 & 3 & 8\end{array}\right) \rightarrow\left(\begin{array}{cccccc}0 & 1 & -1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 & -2 & 6 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right) \rightarrow\left(\begin{array}{cccccc}0 & \square & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\Rightarrow \operatorname{Range}\left(T_{A}\right)=\operatorname{Span}\left(\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ -1 \\ 6 \\ 0\end{array}\right)\right)$
$\operatorname{Ker}\left(T_{A}\right)=\left\{\left(\begin{array}{c}x_{1} \\ x_{3}-2 x_{5} \\ x_{3} \\ x_{3} \\ x_{5} \\ 0\end{array}\right)\right\}=\operatorname{span}\left(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)\right)$
(b) What is $\operatorname{Rank}\left(T_{A}\right)$ ? What is $\operatorname{Nullity}\left(T_{A}\right)$ ?

Solution:
$\operatorname{Rank}\left(T_{A}\right)=\operatorname{din}\left(\operatorname{Rage}\left(T_{A}\right)\right)=3$
$\operatorname{Nullity}\left(T_{A}\right)=\operatorname{dini}\left(\operatorname{Ker}\left(T_{A}\right)\right)=3$
2. (25 points) Let

$$
B=\left\{1,1-x, 1+x-x^{2}, x^{3}-x\right\} \subset \mathbb{P}_{3}(\mathbb{R}), \quad C=\left\{x^{2}-x, x+2,-2\right\} \subset \mathbb{P}_{2}(\mathbb{R})
$$

be bases respectively. Let $T$ be the following linear transformation:

$$
\begin{aligned}
T: \mathbb{P}_{3}(\mathbb{R}) & \rightarrow \mathbb{P}_{2}(\mathbb{R}) \\
p(x) & \mapsto x p^{\prime \prime}(x)-p^{\prime}(x)
\end{aligned}
$$

Determine the matrix of $T$ with respect to bases $B$ and $C$. Is $T$ onto? Justify your answer.

Solution:

$$
\begin{aligned}
& T(1)=0=0\left(x^{2}-x\right)+0(x+2)+0(-2) \\
& T(1-x)=1=0\left(x^{2}-x\right)+0(x+2)+(-1 / 2)(-2) \\
& T\left(1+x-x^{2}\right)=x(-2)-(1-2 x)=-1=0\left(x^{2}-x\right)+0(x+2)+\frac{1}{2}(-2) \\
& T\left(x^{3}-x\right)=x(6 x)-\left(3 x^{2}-1\right)=3 x^{2}+1=3\left(x^{2}-x\right)+3(x+2)+\left(\frac{5}{2}\right)(-2) \\
& \Rightarrow A_{B_{l} C}=\left(\begin{array}{cccc}
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 3 \\
0 & -1 / 2 & 1 / 2 & 5 / 2
\end{array}\right.
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 3 \\
0 & -1 / 2 & 1 / 2 & 5 / 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & \Pi & -1 & 0 \\
0 & 0 & 0 & \Pi \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\Rightarrow$ Not a pivot in every row $\Rightarrow T$ not outs
3. Let $A=\left(\begin{array}{cccc}1 & -1 & 2 & 1 \\ 0 & 2 & a & 1 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2\end{array}\right)$. For what values of $a$ and $b$ is $A$ diagonalizable? You do not need to diagonalize $A$. Justify your answer.
Solution:
$1,2=$ eigenvalues at A Algebraic multiplicity at $1,2=2$
$\Rightarrow A$ diagonalizable $\Leftrightarrow \operatorname{demi}\left(\operatorname{Nul}\left(A-1 \cdot I_{4}\right)\right)=\operatorname{dmi}\left(\operatorname{Nul}\left(A-2 I_{4}\right)\right)=2$

$$
A-1 \cdot I_{4}=\left(\begin{array}{cccc}
0 & -1 & 2 & 1 \\
0 & 1 & a & 1 \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & -1 & 2 & 1 \\
0 & 0 & a+2 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\Rightarrow \operatorname{dini}\left(\operatorname{Nul}\left(A-1 . I_{4}\right)\right)=2 \Leftrightarrow a=-2$ ( 2 tree coleman)
Let $a=-2$

$$
A-2 \cdot I_{1}=\left(\begin{array}{cccc}
-1 & -1 & 2 & 1 \\
0 & 0 & -2 & 1 \\
0 & 0 & -1 & b \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & -1 & 2 & 1 \\
0 & 0 & -1 & b \\
0 & 0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-1 & -1 & 2 \\
0 & 1 \\
0 & -1 & b \\
0 & 0 & 1-2 b \\
0 & 0 & 0
\end{array}\right)
$$

$\Rightarrow \operatorname{din}\left(\operatorname{Nu}\left(A-2 \cdot T_{4}\right)\right)=2 \Leftrightarrow 1-2 t_{0}=0 \Leftrightarrow \frac{1}{2}$ (2 Thee column)
$\Rightarrow A$ diagoualizable $\Leftrightarrow \quad a=-2, b=1 / 2$
4. Let $A=\left(\begin{array}{ccc}-1 & -1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1\end{array}\right)$ and $C=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$. Find a basis $B$ such that

$$
A_{B, C}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& A_{0, c}=\left(\left(A b_{1}\right)_{c}\left(A b_{2}\right)_{c}\left(A b_{3}\right)_{c}\right)=\left(\begin{array}{l}
0 \\
\vdots \\
\vdots \\
\vdots
\end{array}\right) \\
& \Leftrightarrow\left(A \underline{b}_{1}\right)_{c}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(A \underline{b}_{2}\right)_{c}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(A \underline{b}_{3}\right)_{c}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \operatorname{Nul}(A)=\operatorname{Span}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
& \Rightarrow \text { Choose } \underline{b}_{1}=\underline{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \underline{b}_{2}=\underline{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \underline{b}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

5. Let $W$ be the span of the vectors $\left(\begin{array}{c}1 \\ 2 \\ 0 \\ -3\end{array}\right),\left(\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 3 \\ -4\end{array}\right)$ in $\mathbb{R}^{4}$. Calculate the minimum distance between $\left(\begin{array}{l}3 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $W$ ? Hint: This problem can be solved without applying Gram-Schmidt.
Solution:

$$
\left.\begin{array}{l}
W^{\perp}=\operatorname{Nul}\left(\left(\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & -2 & 1 & 1 \\
0 & 1 & 3 & -4
\end{array}\right)\right) \\
\left.\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & -2 & 1 & 1 \\
0 & 1 & 3 & -4
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & 1 & 3 & -4 \\
0 & -2 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & 1 & 3 & -4 \\
0 & 0 & 7 & -7
\end{array}\right) \\
\downarrow \\
\omega^{\perp}=\operatorname{Span}\left(\left.\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \right\rvert\,\right.
\end{array} \begin{array}{l}
1 \\
1
\end{array}\right)
$$

