
Math 104 Solutions Midterm 2

1. (a) (4 pts) Letting ak := sup{xn : n ≥ k} for each k ∈ N we have

lim sup
n→∞

xn = lim
k→∞

ak

Note that since ak is a decreasing sequence, and is bounded below (by any lower bound for (xn)n∈N). Hence it
converges and in fact its limit is inf{ak : k ∈ N}.

(b) (6 pts) We first note that (xn)n∈N being bounded implies ak as above exists for each k ∈ N. Since S is closed,
ak ∈ S. Indeed, otherwise ak is contained in the complement of Sk, which is open. This means there exists r > 0
such that (ak − r, ak + r) ⊂ Sc. However, as the supremum of {xn : n ≥ k}, we know there exists n ≥ k such that

ak − r < xn ≤ ak,

which contradicts xn ∈ S. Thus ak ∈ S. Now, by definition

lim sup
n→∞

xk = lim
k→∞

ak.

Since (ak)k∈N ⊂ S and S is closed, it necessarily contains this limit. �

2. (a) (3 pts) The sequence (xn)n∈N is Cauchy if ∀ε > 0, ∃N ∈ N such that for all n,m ≥ N we have d(xn, xm) < ε.

(b) (2 pts) A metric space is complete if every Cauchy sequence converges.

(c) (5 pts) Let (xn)n∈N be a Cauchy sequence in (E, d). We claim that (xn)n∈N is eventually constant and hence
necessarily converges. Indeed, for ε = 1

2 , there exists N ∈ N such that for all n,m ≥ N ,

d(xn, xm) <
1

2
.

However, since the metric only takes values of 0 and 1, it must be that d(xn, xm) = 0 for all n,m ≥ N . That is,
xn = xm = xN for all n,m ≥ N . Thus the sequence clearly converges to xN . Since this Cauchy sequence was
arbitrary, we see that (E, d) is complete. �

3. (a) (4 pts) A subset S is compact if every open cover has a finite subcover; that is, whenver {Ui}i∈I is a collection
of open subsets of E satisfying

S ⊂
⋃
i∈I

Ui,

then there are i1, . . . , in ∈ I, for some n ∈ N, such that

S ⊂ Ui1 ∪ · · · ∪ Uin .

Alternatively, S is sequentially compact: every sequence (xn)n∈N ⊂ S has a convergent subsequence in S.

Alternatively, S is complete and totally bounded: S is complete and given any ε > 0 we can cover S by finitely
many closed balls of radius ε.

(b) (6 pts) If S is finite, write S = {s1, . . . , sn}. Let {Ui}i∈I be an open cover for S. For each j = 1, . . . , n we can
find ij ∈ I so that sj ∈ Uij . Then {Ui1 , . . . , Uin} is an open cover for S and hence S is compact. If S is infinite,
consider the open cover given by {

B(s,
1

2
)

}
s∈S

.

This is an infinite collection and there are no finite subcovers. In fact, there are not even any subcovers: s′ ∈ B(s, 12 )
if and only if s′ = s and hence the collection cannot cover S is any of the open balls are removed. �
Alternatively, since S is infinite we can define a sequence (xn)n∈N ⊂ S so that xn 6= xm for any distinct indices
n,m ∈ N. Consequently, d(xn, xm) = 1 for all n 6= m. Then no subsequence can converge because it will not even
be a Cauchy sequence. �

4. (a) (4 pts) The function f is continuous if for each x ∈ E and for any ε > 0 there exists δ > 0 so that if y ∈ E
satisfies d(x, y) < δ then d′(f(x), f(y)) < ε.

Alternatively, f−1(U) ⊂ E is open for every open set U ⊂ E′.
Alternatively, whenever (xn)n∈N ⊂ E converges to x ∈ E, we have that (f(xn))n∈N ⊂ E′ converges to f(x) ∈ E′.
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(b) (6 pts) We note that
f(x, y) = d2((x, y), (0, 0))2.

On the homework we show that (x, y) 7→ d2((x, y), (0, 0)) is continuous. In class we showed t 7→ t2 is continuous.
Since the composition of continuous functions is continuous, we have that f is continuous. �

Alternatively, fix (x0, y0) ∈ R2 and let ε > 0. Let

δ = min

{
1,

ε

2(2|x0|+ 1)
,

ε

2(2|y0|+ 1)

}
.

Suppose (x, y) ∈ R2 satisfies d2((x, y), (x0, y0)) < δ. Note that this implies |x − x0|, |y − y0| < δ. Moreover, it
follows that |x| ≤ |x0|+ 1 and |y| ≤ |y0|+ 1. We estimate:

d(f(x, y), f(x0, y0)) = |x2 + y2 − x20 − y20 |
≤ |x2 − x20|+ |y2 − y20 |
≤ |x− x0|(|x|+ |x0|) + |y − y0|(|y|+ |y0|)
< δ(2|x0|+ 1) + δ(2|y0|+ 1)

≤ ε

2
+
ε

2
= ε.

Thus f is continuous at (x0, y0). Since (x0, y0) ∈ R2 was arbitrary, we see that f is continuous on all of R2. �
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