1. (a) (4 pts) The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x in (E, d) if $\forall \epsilon>0, \exists N \in \mathbb{N}$ so that $\forall n \geq N, d\left(x_{n}, x\right)<\epsilon$.
(b) (6 pts) We claim the limit is 3 . Let $\epsilon>0$. Choose $N>\sqrt{3 / \epsilon}$. Then for any $n \geq N$ we have $\frac{3}{n^{2}} \leq \frac{3}{N^{2}}<\epsilon$ and thus

$$
d\left(x_{n}, 3\right)=\left|\frac{3 n^{3}}{n^{3}+n}-3\right|=\left|\frac{3 n^{3}-3 n^{3}-3 n}{n^{3}+n}\right|=\left|\frac{-3 n}{n^{3}+n}\right|=\frac{3 n}{n^{3}+n} \leq \frac{3 n}{n^{3}}=\frac{3}{n^{2}}<\epsilon .
$$

2. (a) $(\mathbf{4} \mathbf{~ p t s})(E, d)$ is a metric space if for all $x, y, z \in E$
(i) $d(x, y) \in[0,+\infty)$;
(ii) $d(x, y)=0$ iff $x=y$;
(iii) $d(x, y)=d(y, x)$;
(iv) $d(x, y) \leq d(x, z)+d(z, y)$.
(b) (6 pts) We check the four parts of the definition from part (a):
(i) Since $|x-y| \geq 0$ for all $x, y \in \mathbb{R}$ and $1 \geq 0$, we obtain $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
(ii) If $d(x, y)=0$, then necessarily we have $d(x, y)=|x-y|$. Hence $|x-y|=0$ which implies $x=y$. Conversely, if $x=y$ then

$$
d(x, y)=\min \{|x-y|, 1\}=\min \{0,1\}=0 .
$$

(iii) Since $|x-y|=|-(x-y)|=|-x+y|=\mid y-x$, we have

$$
d(x, y)=\min \{|x-y|, 1\}=\min \{|y-x|, 1\}=d(y, x) .
$$

(iv) We first note that if $d(x, z)+d(z, y) \geq 1$ then we immediately obtain

$$
d(x, y) \leq 1 \leq d(x, z)+d(z, y) .
$$

Otherwise, $d(x, z)+d(z, y)<1$ and consequently $d(x, z)<1$ and $d(z, y)<1$. This means $d(x, z)=|x-z|$ and $d(z, y)=|z-y|$. But then the triangle inequality for the absolute value implies

$$
|x-y|=|x-z+z-y| \leq|x-z|+|z-y|=d(x, z)+d(z, y)<1 .
$$

Consequently,

$$
d(x, y)=\min \{|x-y|, 1\}=|x-y|,
$$

and so the previous inequality implies $d(x, y) \leq d(x, z)+d(z, y)$.
3. (a) ($\mathbf{3} \mathbf{~ p t s) ~ A ~ s u b s e t ~} S$ is open if for every $x \in S$ there exists $r>0$ such that $B(x, r) \subset S$.
(b) $(\mathbf{7} \mathrm{pts})$ Let $\left(x_{0}, y_{0}\right) \in S$. Then $-5<x_{0}<5$, and so if we set

$$
r:=\min \left\{5-x_{0}, x_{0}+5\right\}
$$

then $r>0$. We claim that $B\left(\left(x_{0}, y_{0}\right), r\right) \subset S$. Indeed, let $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$. Then we observe that

$$
\left|x-x_{0}\right|=\sqrt{\left(x-x_{0}\right)^{2}} \leq \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<r .
$$

Thus we have

$$
x=x-x_{0}+x_{0} \leq\left|x-x_{0}\right|+x_{0}<r+x_{0} \leq 5-x_{0}+x_{0}=5,
$$

that is, $x<5$. Similarly,

$$
-x=-x+x_{0}-x_{0} \leq\left|x_{0}-x\right|-x_{0}<r-x_{0} \leq x_{0}+5-x_{0}=5,
$$

that is $-x<5$ or $x>-5$. Hence $-5<x<5$ which implies $(x, y) \in S$. Since $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$ was arbitrary, we have $B\left(\left(x_{0}, y_{0}\right), r\right) \subset S$. Since $\left(x_{0}, y_{0}\right) \in S$ was arbitrary, we have shown that S is open.
4. (a) ($\mathbf{2} \mathbf{~ p t s}$) A set $S \subset E$ is closed if its complement is open. Alternatively, S is closed if whenever a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset S$ converges to some $x \in E$, then $x \in S$.
(b) (8 pts) We use the second definition in part (a). Suppose $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}} \subset S$ is a sequence converging to $(x, y) \in \mathbb{R}^{2}$ with respect to the metric d_{∞}. We will show $(x, y) \in S$. We observe that

$$
\left.\left.\begin{array}{rl}
\left|x_{n}-x\right| & \leq \max \left\{\left|x_{n}-x\right|,\left|y_{n}-y\right|\right\} \\
\left|y_{n}-y\right| & \leq \max \left\{\left|x_{n}-x\right|,\left|y_{n}-y\right|\right\}
\end{array}=d_{\infty}\left(\left(x_{n}, y_{n}\right),(x, y)\right), \quad \text { and }, y_{n}\right),(x, y)\right), ~ l
$$

So if d is the metric on \mathbb{R} from Question 1 , then

$$
d\left(x_{n}, x\right), d\left(y_{n}, y\right) \leq d_{\infty}\left(\left(x_{n}, y_{n}\right),(x, y)\right)
$$

This implies-since $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ converges to (x, y) with respect to d_{∞}-that $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ converge to x and y, respectively, with respect to d. Indeed, let $\epsilon>0$. Then let $N \in \mathbb{N}$ be such that for all $n \geq N$ we have

$$
d_{\infty}\left(\left(x_{n}, y_{n}\right),(x, y)\right)<\epsilon
$$

But then by the previous inequalities, for all $n \geq N$ we also have

$$
d\left(x_{n}, x\right)<\epsilon \quad \text { and } \quad d\left(y_{n}, y\right)<\epsilon
$$

Hence $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. From a proposition in class we therefore obtain:

$$
y \cdot x=\lim _{n \rightarrow \infty}\left(y_{n} \cdot x_{n}\right)
$$

From yet another proposition from class, since $y_{n} \cdot x_{n} \geq 1$ for all $n \in \mathbb{N}$ (by virtue of $\left(x_{n}, y_{n}\right) \in S$, we have

$$
y \cdot x \geq \lim _{n \rightarrow \infty} 1=1
$$

Hence $(x, y) \in S$.

