- 1. (a) (4 pts) The sequence $(x_n)_{n \in \mathbb{N}}$ converges to x in (E, d) if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ so that $\forall n \ge N, d(x_n, x) < \epsilon$.
 - (b) (6 pts) We claim the limit is 3. Let $\epsilon > 0$. Choose $N > \sqrt{3/\epsilon}$. Then for any $n \ge N$ we have $\frac{3}{n^2} \le \frac{3}{N^2} < \epsilon$ and thus

$$d(x_n,3) = \left|\frac{3n^3}{n^3 + n} - 3\right| = \left|\frac{3n^3 - 3n^3 - 3n}{n^3 + n}\right| = \left|\frac{-3n}{n^3 + n}\right| = \frac{3n}{n^3 + n} \le \frac{3n}{n^3} = \frac{3}{n^2} < \epsilon.$$

- 2. (a) (4 pts) (E, d) is a metric space if for all $x, y, z \in E$
 - (i) $d(x, y) \in [0, +\infty);$
 - (ii) d(x, y) = 0 iff x = y;
 - (iii) d(x,y) = d(y,x);
 - (iv) $d(x, y) \le d(x, z) + d(z, y)$.
 - (b) (6 pts) We check the four parts of the definition from part (a):
 - (i) Since $|x y| \ge 0$ for all $x, y \in \mathbb{R}$ and $1 \ge 0$, we obtain $d(x, y) \ge 0$ for all $x, y \in \mathbb{R}$.
 - (ii) If d(x, y) = 0, then necessarily we have d(x, y) = |x y|. Hence |x y| = 0 which implies x = y. Conversely, if x = y then

$$d(x, y) = \min\{|x - y|, 1\} = \min\{0, 1\} = 0.$$

(iii) Since |x - y| = |-(x - y)| = |-x + y| = |y - x, we have

$$d(x, y) = \min\{|x - y|, 1\} = \min\{|y - x|, 1\} = d(y, x).$$

(iv) We first note that if $d(x, z) + d(z, y) \ge 1$ then we immediately obtain

$$d(x,y) \le 1 \le d(x,z) + d(z,y).$$

Otherwise, d(x, z) + d(z, y) < 1 and consequently d(x, z) < 1 and d(z, y) < 1. This means d(x, z) = |x - z|and d(z, y) = |z - y|. But then the triangle inequality for the absolute value implies

$$|x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x, z) + d(z, y) < 1.$$

Consequently,

$$d(x,y) = \min\{|x-y|, 1\} = |x-y|,$$

and so the previous inequality implies $d(x, y) \leq d(x, z) + d(z, y)$.

- 3. (a) (3 pts) A subset S is open if for every $x \in S$ there exists r > 0 such that $B(x, r) \subset S$.
 - (b) (7 pts) Let $(x_0, y_0) \in S$. Then $-5 < x_0 < 5$, and so if we set

$$r := \min\{5 - x_0, x_0 + 5\}$$

then r > 0. We claim that $B((x_0, y_0), r) \subset S$. Indeed, let $(x, y) \in B((x_0, y_0), r)$. Then we observe that

$$|x - x_0| = \sqrt{(x - x_0)^2} \le \sqrt{(x - x_0)^2 + (y - y_0)^2} < r.$$

Thus we have

$$x = x - x_0 + x_0 \le |x - x_0| + x_0 < r + x_0 \le 5 - x_0 + x_0 = 5,$$

that is, x < 5. Similarly,

$$-x = -x + x_0 - x_0 \le |x_0 - x| - x_0 < r - x_0 \le x_0 + 5 - x_0 = 5,$$

that is -x < 5 or x > -5. Hence -5 < x < 5 which implies $(x, y) \in S$. Since $(x, y) \in B((x_0, y_0), r)$ was arbitrary, we have $B((x_0, y_0), r) \subset S$. Since $(x_0, y_0) \in S$ was arbitrary, we have shown that S is open.

4. (a) (2 pts) A set $S \subset E$ is closed if its complement is open. Alternatively, S is closed if whenever a sequence $(x_n)_{n \in \mathbb{N}} \subset S$ converges to some $x \in E$, then $x \in S$.

(b) (8 pts) We use the second definition in part (a). Suppose $((x_n, y_n))_{n \in \mathbb{N}} \subset S$ is a sequence converging to $(x, y) \in \mathbb{R}^2$ with respect to the metric d_{∞} . We will show $(x, y) \in S$. We observe that

$$|x_n - x| \le \max\{|x_n - x|, |y_n - y|\} = d_{\infty}((x_n, y_n), (x, y)), \quad \text{and} \\ |y_n - y| \le \max\{|x_n - x|, |y_n - y|\} = d_{\infty}((x_n, y_n), (x, y))$$

So if d is the metric on \mathbb{R} from Question 1, then

$$d(x_n, x), d(y_n, y) \le d_{\infty}((x_n, y_n), (x, y)).$$

This implies—since $((x_n, y_n))_{n \in \mathbb{N}}$ converges to (x, y) with respect to d_{∞} —that $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ converge to x and y, respectively, with respect to d. Indeed, let $\epsilon > 0$. Then let $N \in \mathbb{N}$ be such that for all $n \ge N$ we have

$$d_{\infty}((x_n, y_n), (x, y)) < \epsilon.$$

But then by the previous inequalities, for all $n \ge N$ we also have

$$d(x_n, x) < \epsilon$$
 and $d(y_n, y) < \epsilon$.

Hence $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$. From a proposition in class we therefore obtain:

$$y \cdot x = \lim_{n \to \infty} (y_n \cdot x_n).$$

From yet another proposition from class, since $y_n \cdot x_n \ge 1$ for all $n \in \mathbb{N}$ (by virtue of $(x_n, y_n) \in S$, we have

$$y \cdot x \ge \lim_{n \to \infty} 1 = 1,$$

Hence $(x, y) \in S$.