Chem 12B Midterm 2

Instructor: Richmond Sarpong March 22nd 2018 8:10-9:30 am, 100 Lewis

You have **80 minutes** to complete this exam. Please write you answers clearly only on the pages indicated <u>and be as detailed as possible</u>. Nothing written outside the numbered pages will be graded. There should be 8 total pages in this exam.

Name:	,		
UID:			
GSI Name:			
Question		Score	
1		(12 points)	
2		(10 points)	
3		(10 points)	
4		(17 points)	
5		(12 points)	
6		(19 points)	
7		(20 points)	
Total		(10	<i>90)</i>

Question 1 (12 points):

Indicate in the boxes that are provided whether the following transformations are net oxidations (with "[O]"), net reductions (with "[H]") or neither (with "NA") (2 pts each; 12 pts total):

A.
$$\bigcirc$$
 B. \bigcirc B. \bigcirc C. \bigcirc C

Question 2 (10 points):

(a) Explain why **QQ** is converted to **RR** under the indicated conditions using up to four structures and three sentences. (7 pts total)

(b) The Swern oxidation can be used instead of the Jones oxidation to convert \mathbf{QQ} to \mathbf{SS} in Part (a) above. Provide conditions for the Swern oxidation (3 pts).

Question 3 (10 points):

(a) Propose a synthesis of **EE** from **DD** (show reagents) given that a Lindlar reduction and other reactions of your choosing are involved (5 pts)

(b) Propose a synthesis of $\mathbf{G}\mathbf{G}$ from benzene (show reagents) (5 pts)

Question 4 (17 Points):

(a) Indicate which of the following substituents would direct ortho/para (with "o/p") or meta (with "m") in the boxes provided (1 pt each; 6 pts total)

(b) Predict the outcome of the following reactions. Place your answers in the boxes provided (3pts each)

(c) Quinoline **VV** can be prepared from **UU** and benzoic acid. Provide a synthesis (show reagents) knowing that it involves a Gabriel amine synthesis and Bischler-Napieralski reaction (8 pts).

Question 5 (12 points):

(a) Rank the following chlorinated aromatic compounds in order of their reactivity with NaOMe (indicate the most reactive as 1). (1 pt each)

(b) Provide a rationalization for your relative ranking of $\bf C$ and $\bf D$ from Part (a) in three or less sentences and four or less structures (4 pts)

(c) Provide a mechanism for the following observation of ipso substitution (4 pts)

Question 6 (19 points)

(a) Fill in the boxes below (3 pts each)

(b) Provide a mechanism for the Suzuki coupling step from Part (a) above. Be sure to label each elementary organometallic step in your mechanism (10 pts)

Question 7 (20 points):

Propose a synthesis of **ZZ** from **MM** using unlimited amounts of the materials provided from the Chem 12B stockroom and any other materials that you may deem necessary. Hints: Heck and Sonogashira coupling reactions are involved and **XY** and **RQ** are intermediates.

The End