
Chemical Engineering 150A 

Midterm Exam – 2 

Tuesday, April 3, 2018 

6:05 pm – 6:55 pm  

 
The exam is 100 points total.  

  

Name: _________________________________ (in Uppercase)  

  
Student ID: _____________________________  
  
You are allowed one 8.5”×11” sheet of paper with your notes on both sides.  

  

The exam should have 12 exam pages including the cover page. Additionally, 

you will find 5 pages with the relevant equations attached to the back of the 

exam.  

  

Instructions:  

  

1) Only the numbered pages (front side of the page) will be graded. Any 

work done outside of specified area will not be graded.  

2) Please sign below saying that you agree to the UC Berkeley honor 

code. 

3) The exam contains two problems.  

4) You can use the blank white full pages behind the question pages as 
scratch sheets, but they will not be graded. 
5) If you simplify directly on the handout, we will grade it. 

  

Honor Code:  

  

As a member of the UC Berkeley community, I act with honesty, integrity, 

and respect for others.  

  

Signature: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   
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Problem 1: (20 points) 

 

At the inlet of a pump, the pressure and velocity of the fluid is known, 𝑃1 and 𝑣1, respectively. 

The fluid is Newtonian and incompressible of density 𝜌. Shaft work, �̇�𝑠, acts on the pump and 

the pump acts adiabatically. The inlet is of diameter 𝐷1, while the outlet is of diameter 𝐷2 (where 

𝐷2 < 𝐷1). Determine the outlet pressure, 𝑃2, in terms of �̂�𝑠, 𝑣1, 𝜌, 𝑃1, 𝐷1, and 𝐷2. You can 

ignore viscous forces, can assume that the inlet and outlet streams have a plug velocity profile, 

and can assume that the internal energy change across the pump is zero. The inlet and outlet 

streams are at the same height. The general energy equation is given below: 

 

𝜕

𝜕𝑡
∫ 𝜌 (𝑢 +

1

2
𝑣 ∙ 𝑣 + 𝑔ℎ) 𝑑𝑉

𝐶𝑉

=  − ∫ (𝑢 +
1

2
𝑣 ∙ 𝑣 + 𝑔ℎ +

𝑃

𝜌
)

𝐶𝑆

(𝜌𝑣 ∙ 𝑛)𝑑𝐴 + �̇� + 𝑊𝑠
̇

+ ∫ (𝜏𝑇𝑛) ∙ 𝑣
𝐶𝑆

𝑑𝑆 

  

 
 

Energy bal: 

0 = − ∫ (𝑢 +
1

2
𝑣 ∙ 𝑣 + 𝑔ℎ +

𝑃

𝜌
)

𝐶𝑆

(𝜌𝑣 ∙ 𝑛)𝑑𝑆 + 𝑊𝑠
̇  

0 = − (𝑢1 +
1

2
𝑣1

2 + 𝑔ℎ1 +
𝑃1

𝜌
) (−𝜌𝑣1)𝐴1 − (𝑢2 +

1

2
𝑣2

2 + 𝑔ℎ2 +
𝑃2

𝜌
) (𝜌𝑣2)𝐴2 + 𝑊𝑠

̇  

 

0 = (𝑢1 +
1

2
𝑣1

2 + 𝑔ℎ1 +
𝑃1

𝜌
) �̇� − (𝑢2 +

1

2
𝑣2

2 + 𝑔ℎ2 +
𝑃2

𝜌
) �̇� + 𝑊𝑠

̇  

 

Mass bal: 

𝜌𝑣1𝐴1 = 𝜌𝑣2𝐴2 = �̇� 
 

𝑣2 = 𝑣1 (
𝐷1

𝐷2
)

2

 

Back to energy bal: 

 

0 = �̇� ((𝑢1 − 𝑢2) +
1

2
(𝑣1

2 − (𝑣1 (
𝐷1

𝐷2
)

2

)

2

) + 𝑔(ℎ1 − ℎ2) +
1

𝜌
(𝑃1 − 𝑃2)) + 𝑊𝑠

̇  
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0 = (
1

2
(𝑣1

2 − (𝑣1 (
𝐷1

𝐷2
)

2

)

2

) +
1

𝜌
(𝑃1 − 𝑃2)) + �̂�𝑠 

 

𝑃2 = 𝜌�̂�𝑠 +
1

2
𝜌𝑣1

2 (1 − (
𝐷1

𝐷2
)

4

) + 𝑃1 
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Problem 2: (80 points) 

 

An incompressible, Newtonian fluid, of density, 𝜌, and viscosity, 𝜇, flows down the outside 

of a very long solid cylinder. The fluid has a uniform thickness of (𝑎 − 1)𝑅 and is in contact 

with air. The solid is rotating at an angular speed of 𝜔 (𝜔 is small, but not negligible). The 

cylinder is aligned with gravity in the z-direction and is held in place vertically while it is 

rotating. You can assume that there are no pressure gradients in the 𝜃 and z-direction. 

 

 

Side view 

 

 

Top View 

 

 

 

 

 
 

 

Note: 

1. The flow is fully developed and at steady-state.  

2. Make all the assumptions that seem physical to you for velocity and pressure 

dependences to reduce the complexity. Explicitly state your assumptions motivated from 

physical arguments in a couple of words. 

3. A handout with the Navier-Stokes equations is attached to the exam.  

4. If you are running out of time, make sure to write the relevant equations and appropriate 

boundary conditions to get partial credit.  

5. There are 2 parts to this problem 
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a) Determine the velocity profile(s) of the fluid. Solve them in terms of the known constants 

𝑎, 𝑅, 𝜔, 𝜌, 𝑔, and 𝜇. You need not obtain the pressure profiles. Box your final velocity 

profiles. 

 

 

 

𝑣 = 𝑣𝑟𝑒𝑟 + 𝑣𝜃𝑒𝜃 + 𝑣𝑧𝑒𝑧 

 

 

𝑣𝜃 = 𝑣𝜃(𝑟, 𝜃, 𝑧) 
 

 

 

𝑣𝑧 = 𝑣𝑧(𝑟, 𝜃, 𝑧) 
 

 

Continuity Equation as a check: 

 
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕(𝜌𝑟𝑣𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝜌𝑣𝜃)

𝜕𝜃
+

𝜕(𝜌𝑣𝑧)

𝜕𝑧
= 0 

 

 

𝜕𝜌

𝜕𝑡
+ 𝜌 (

1

𝑟

𝜕(𝑟𝑣𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝜕𝑣𝑧

𝜕𝑧
) = 0 

 

 
1

𝑟

𝜕(𝑟𝑣𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝜕𝑣𝑧

𝜕𝑧
= 0 

 

 

𝜃 direction: 

 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝜃𝑣𝑟

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
)

= −
1

𝑟

𝜕𝑃

𝜕𝜃
+ 𝜌𝑔𝜃 + 𝜇 [

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜃)) +

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2
+

2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
+

𝜕2𝑣𝜃

𝜕𝑧2
] 

 

 

0 = 𝜇 [
𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜃))] 

 

𝐶1 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜃) 

 

𝜔 is small 

Symmetry 

𝑣𝜃 same at all z 

Symmetry 

Fully developed 

Incompressible 

𝑣𝑟 = 0 

𝑣𝜃 ≠ 𝑣𝜃(𝜃) 

Fully developed 
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𝐶1𝑟 =
𝜕

𝜕𝑟
(𝑟𝑣𝜃) 

 

𝐶2𝑟2 + 𝐶3 = 𝑟𝑣𝜃 
 

𝑣𝜃(𝑟) = 𝐶2𝑟 +
𝐶3

𝑟
 

 

 

 

 

 

𝑧 direction: 

 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) +

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2
+

𝜕2𝑣𝑧

𝜕𝑧2
] 

 

 

0 = −𝜌𝑔 + 𝜇 [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
)] 

 
𝜌𝑔

𝜇
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) 

 
𝜌𝑔𝑟

𝜇
=

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) 

 

𝜌𝑔𝑟2

2𝜇
+ 𝐵1 = 𝑟

𝜕𝑣𝑧

𝜕𝑟
 

 
𝜌𝑔𝑟

2𝜇
+

𝐵1

𝑟
=

𝜕𝑣𝑧

𝜕𝑟
 

 

𝑣𝑧(𝑟) =
𝜌𝑔𝑟2

4𝜇
+ 𝐵1 ln(𝑟) + 𝐵2 

 

Boundary conditions 

1. @ 𝑟 = 𝑅, 𝑣𝜃(𝑅) = 𝜔𝑅 

2. @ 𝑟 = 𝑎𝑅, 𝜏𝑟𝜃|𝑟=𝑎𝑅,𝐿𝑖𝑞 = 𝜏𝑟𝜃|𝑟=𝑎𝑅,𝐴𝑖𝑟 = 0 

3. @ 𝑟 = 𝑅, 𝑣𝑧(𝑅) = 0 

4. @ 𝑟 = 𝑎𝑅, 𝜏𝑟𝑧|𝑟=𝑎𝑅,𝐿𝑖𝑞 = 𝜏𝑟𝑧|𝑟=𝑎𝑅,𝐴𝑖𝑟 = 0 

Apply BC1: 

𝑣𝜃(𝑅) = 𝜔𝑅 = 𝐶2𝑅 +
𝐶3

𝑅
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𝜔 = 𝐶2 +
𝐶3

𝑅2
 

 

𝐶2 = 𝜔 −
𝐶3

𝑅2
 

 

Apply BC2: 

 

𝜏𝑟𝜃(𝑎𝑅) =  𝜇 [𝑟
𝜕

𝜕𝑟
(

𝑣𝜃

𝑟
) +

1

𝑟

𝜕𝑣𝑟

𝜕𝜃
] = 0 

 

[𝑟
𝜕

𝜕𝑟
(

𝑣𝜃

𝑟
)]

𝑟=𝑎𝑅
= 0 

 

[
𝜕

𝜕𝑟
(

𝐶2𝑟 +
𝐶3

𝑟
𝑟

)]

𝑟=𝑎𝑅

= 0 

 

[
𝜕

𝜕𝑟
(𝐶2 +

𝐶3

𝑟2
)]

𝑟=𝑎𝑅
= 0 

 

−
2𝐶3

(𝑎𝑅)3
= 0 

 

𝐶3 = 0 
 

𝐶2 = 𝜔 
 

𝑣𝜃(𝑟) = 𝜔𝑟 
 

Apply BC3: 

 

𝑣𝑧(𝑅) = 0 =
𝜌𝑔𝑅2

4𝜇
+ 𝐵1 ln(𝑅) + 𝐵2 

 

Apply BC4: 

 

𝜏𝑟𝑧|𝑟=𝜅𝑅 = 𝜇 [
𝜕𝑣𝑟

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑟
]

𝑟=𝑎𝑅
= 0 

 

[
𝜕𝑣𝑧

𝜕𝑟
]

𝑟=𝑎𝑅
= 0 

 
𝜌𝑔𝑎𝑅

2𝜇
+

𝐵1

𝑎𝑅
= 0 



8 

 

 

𝐵1 = −
𝜌𝑔

2𝜇
(𝑎𝑅)2 

 

Back to BC3: 

 

𝑣𝑧(𝑅) = 0 =
𝜌𝑔𝑅2

4𝜇
−

𝜌𝑔

2𝜇
(𝑎𝑅)2 ln(𝑅) + 𝐵2 

 

𝐵2 =
𝜌𝑔

2𝜇
(𝑎𝑅)2 ln(𝑅) −

𝜌𝑔𝑅2

4𝜇
 

 

𝑣𝑧(𝑟) =
𝜌𝑔𝑟2

4𝜇
−

𝜌𝑔

2𝜇
(𝑎𝑅)2 ln(𝑟) +

𝜌𝑔

2𝜇
(𝑎𝑅)2 ln(𝑅) −

𝜌𝑔𝑅2

4𝜇
 

 

 

Velocity profiles: 

 

 

𝑣𝑧(𝑟) =
𝜌𝑔

4𝜇
(𝑟2 − 𝑅2) +

𝜌𝑔(𝑎𝑅)2

2𝜇
[ln(𝑅) − ln(𝑟)] 

 

𝑣𝜃(𝑟) = 𝜔𝑟 
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b) Based off of your intuition or velocity profiles derived in part (a), draw the path of two 

massless colloids or balls, D1 and D2,  that were released into the fluid, one at 𝑟 = 𝑅 and 

the other at 𝑟 = 𝑎𝑅, when the cylinder rotates 2𝜋.  

(The paths need not be drawn exactly). 

 


