Chemical Engineering 150A
 Midterm Exam
 Tuesday, February 20, 2018
 6:10 pm - 7:00 pm

The exam is 100 points total.
Name: \qquad (in Uppercase)

Student ID:

\qquad
You are allowed one $8.5^{\prime \prime} \times 11$ " sheet of paper with your notes on both sides and a calculator for this exam.

The exam should have 11 pages (front and back) including the cover page.

Instructions:

1) Please write your answers in the box if provided.
2) Do your calculations in the space provided for the corresponding part. Any work done outside of specified area will not be graded.
3) Please sign below saying that you agree to the UC Berkeley honor code.
4) The exam contains one problem with sub-parts.
5) Use the blank white full pages behind the question pages as scratch sheets.

Honor Code:

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Signature: \qquad

$1 . \mathrm{a}$	$1 . \mathrm{b}$	$1 . \mathrm{c}$	$1 . \mathrm{d}$	$1 . \mathrm{e}$	$1 . \mathrm{f}$	$1 . \mathrm{g}$	$1 . \mathrm{h}$	Total

Problem 1. (100 points)

Suppose we have two immiscible, Newtonian fluids with the same densities but different viscosities between two parallel, vertical plates separated by a width $2 \mathbf{b}$ and height \mathbf{L}. The first plate is stationary and the second plate has a constant velocity $\mathbf{U}_{\mathbf{2}}$. Do not forget gravity in the z -direction!

1. Assume that there is no pressure gradient in the z -direction.
2. The viscosity of fluid 2 is $1 / 3^{\text {rd }}$ of viscosity of fluid 1 , i.e., $\mu_{2}=\frac{1}{3} \mu_{1}$
3. Assume that the system is at steady state and that the velocity of the fluid has the following form:

$$
\underline{v}=v_{z}(x) \underline{e_{z}}
$$

A schematic of this setup is given below along with a coordinate system.

a. Is the flow incompressible or not? Prove it. (10 points)
b. The fluid flowing between the plates can be described by the following constitutive relationships between shear stress and velocity gradients, where μ is the coefficient of viscosity.

Please circle the components that are non-zero. (10 points)

$$
\begin{array}{lll}
\tau_{x x}=2 \mu \frac{\partial v_{x}}{\partial x} & \tau_{x y}=\mu\left[\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right] & \tau_{x z}=\mu\left[\frac{\partial v_{x}}{\partial z}+\frac{\partial v_{z}}{\partial x}\right] \\
\tau_{y x}=\mu\left[\frac{\partial v_{y}}{\partial x}+\frac{\partial v_{x}}{\partial y}\right] & \tau_{y y}=2 \mu \frac{\partial v_{y}}{\partial y} & \tau_{y z}=\mu\left[\frac{\partial v_{y}}{\partial z}+\frac{\partial v_{z}}{\partial y}\right] \\
\tau_{z x}=\mu\left[\frac{\partial v_{z}}{\partial x}+\frac{\partial v_{x}}{\partial z}\right] & \tau_{z y}=\mu\left[\frac{\partial v_{z}}{\partial y}+\frac{\partial v_{y}}{\partial z}\right] & \tau_{z z}=2 \mu \frac{\partial v_{z}}{\partial z}
\end{array}
$$

c. Give the Cauchy momentum balance only in the x-direction and simplify it. What can you conclude from the x -direction for the pressure? (10 points)
d. Give the Cauchy momentum balance only in the z-direction and simplify it using the constitutive relationships from part b. Write the final ordinary differential equation in the box for the velocity. (20 points)
e. Solve the ordinary differential equation derived in part (d) for the velocity profile for fluid 1 and fluid 2 with viscosities μ_{1} and μ_{2}. Do not solve for the constants of integration yet, which means you can leave the constants of integration as they are. Write the answers in the box. (15 points)

NOTE: If you cannot solve the flow profile, set up the problem appropriately.

f. Give appropriate boundary conditions for the flow. Write the answers in the box. (15 points)

g. Now use the boundary conditions and solve the problem for the velocity profiles including constants of integration. (15 points)
h. Sketch the flow profile in the figure provided. If you are not certain about the profile, draw based on your intuition and provide explanation for what you drew (5 points)

