
Midterm #2, Physics 5C, Spring 2018. Write your responses below, on the back, or on the extra pages.
Show your work, and take care to explain what you are doing; partial credit will be given for incomplete
answers that demonstrate some conceptual understanding. Cross out or erase parts of the problem you wish
the grader to ignore. Some potentially useful formulae are given on the back page

Problem 1: (16 pts)

A particle in 3D space has a wavefunction1 in spherical coordinates

ψ(r, θ, φ) =
A

r
e−αre2iφ (1)

where A and α are real constants.

1a) Determine A

Solution: We must normalize the solution, which in spherical coordinates means∫ 2π

0

∫ π

0

∫ ∞
0

ψ∗ψr2dr sin θdθdφ = 1 (2)

In this case ∫ 2π

0

∫ π

0

∫ ∞
0

A

r
e−αre−2iφA

r
e−αre2iφr2dr sin θdθdφ = 1 (3)

A2

∫ 2π

0

∫ π

0

∫ ∞
0

e−2αrdr sin θdθdφ = 1 (4)

Since there is no dependence on θ, φ, the angular integrals just give a factor of 4π

4πA2

∫ ∞
0

e−2αrdr = 1 (5)

Doing the radial integral

4πA2 1

−2α
e−2αr

∣∣∣∣∞
0

=
2πA2

α
= 1 (6)

From which we find

A =

√
α

2π
(7)

So that the normalized wavefunction is

ψ =

√
α

2π

e−αre2iφ

r
(8)

1b) At what radius r0 is the probability of finding the particle at r > r0 equal to 1/2? Give the result in
terms of the constants given.

Solution: The probability that we find the particle at r > r0 is

P (r > r0) =

∫ 2π

0

∫ π

0

∫ r0

0

|ψ|2r2dr sin θdθdφ (9)

The angular integrals just give 4π again so

P (r > r0) = 4π

∫ ∞
r0

α

2π
e−2αrdr = 2α

(
1

−2α

)
e−2αr

∣∣∣∣∞
r0

= e−2αr0 (10)

We want probability one half so

e−2αr0 = 1/2 ⇒ e2αr0 = 2 ⇒ 2αr0 = log 2 (11)

1Don’t worry about the fact that the wavefunction is infinite at r = 0; that won’t affect the results of this problem. If you
like you can imagine that ψ saturates to some finite value for very small r.
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Thus

r0 =
log 2

2

1

α
(12)

1c) The operator associated with orbital angular momentum in the z direction is

L̂z = −ih̄ ∂

∂φ
(13)

Show that the wavefunction ψ an eigenstate of L̂z.

Solution: We apply L̂z to the function

L̂zψ = −ih̄∂ψ
∂φ

= −ih̄ ∂

∂φ

(
A

r
e−αrei2φ

)
= −ih̄

(
A

r
e−αr

∂ei2φ

∂φ

)
= −ih̄

(
i2
A

r
e−αrei2φ

)
(14)

And so
L̂zψ = −ih̄(i2)ψ = 2h̄ψ (15)

So L̂z applied to ψ returns ψ times a constant. The eigenvalue is 2h̄.

1d) What is the expectation value of L̂z for this ψ? What is the uncertainty in L̂z?

Since ψ is an eigenstate, we know that a measurement will return the eigenvalue 2h̄ every time. So we can
say off the bat that 〈Lz〉 = 2h̄ and σLz = 0. If we want to show this explicitly (not necessary to do, but a
reasonable double check) we can do the integrals

〈Lz〉 =

∫ ∫ ∫
(ψ∗L̂zψ)r2dr sin θdθdφ =

∫ ∫ ∫
(ψ∗2h̄ψ)r2dr sin θdθdφ (16)

= 2h̄

∫ ∫ ∫
|ψ|2r2dr sin θdθdφ = 2h̄ (17)

where in the last step we used the fact that we already normalized ψ above. We also have similarly〈
L2
z

〉
=

∫ ∫ ∫
(ψ∗L̂2

zψ)r2dr sin θdθdφ =

∫ ∫ ∫
(ψ∗2h̄L̂zψ)r2dr sin θdθdφ (18)

==

∫ ∫ ∫
(ψ∗(2h̄)2ψ)r2dr sin θdθdφ = 4h̄2

∫ ∫ ∫
|ψ|2r2dr sin θdθdφ = 4h̄2 (19)

and so
σ2
Lz =

〈
L2
z

〉
− 〈Lz〉2 = 4h̄2 − (2h̄)2 = 0 (20)

As expected
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Problem 2: (20 pts) A particle is in a semi-circular infinite well where V = 0 inside the well (grey shaded

region in the figure) and V =∞ outside. In spherical coordinates, the well confines the particle at a constant
radius r = R and constant polar angle θ = π/2. The wavefunction thus only depends on the angle φ, i.e.,
ψ = ψ(φ)

2a) Solve for the normalized energy eigenstates of this particle.

Solution: The time-independent Schrodinger equation is

−h̄2

2m
∇2ψ + V ψ = Eψ (21)

Since the wavefunction is independent of θ, r we can drop the derivatives with respect to those functions in
the Laplacian. The equation then becomes

−h̄2

2mR2

∂2ψ

∂ψ2
= Eψ (22)

Rewriting this as

∂2ψ

∂ψ2
= −k2ψ where k =

√
2mER2

h̄2 (23)

The solution is
ψ = A sin(kφ) +B cos(kφ) (24)

Or alternatively we could write it in terms of complex exponentials

ψ = A′eikφ +B′e−ikφ (25)

The boundary conditions give that ψ = 0 at φ = 0 and φ = π. These first gives

ψ(0) = B cos(kπ/2) = 0 ⇒ B = 0 (26)

The second gives
ψ(π) = A sin(kπ) = 0 ⇒ k = n where n = 1, 2, 3, ... (27)

So the solutions are
ψn(φ) = A sin(nφ) (28)

To normalize we want ∫ π

0

|A|2 sin2(nφ)dφ = 1 (29)

This looks a lot like a particle in a 1D well. If we wanted to make it look more familiar for doing the integral,
we could make the substitution φ = πx ∫ 1

0

|A|2 sin2(nπx)πdx = 1 (30)
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Apart from the extra factor of π, this is the same normalization integral we do for the 1D particle in a box
of length L = 1. We know that the integration of the sin2 over a box gives a factor of 1/2 so∫ 1

0

|A|2 sin2(nπx)πdx = |A|2π
2

= 1 (31)

And so |A|2 = 2/π or A =
√

2/π up to an arbitrary complex phase. The normalization is the same as a box
of length π. The normalized wavefunction

ψ =

√
2

π
sin(nφ) (32)

In the above, we considered ψ a function of only φ, and so |ψ|2 has units of per radian.

2b) Determine the values of energy that could be measured for the particle.

Solution: From above, the energy is given by

E =
h̄2k2

2mR2
(33)

And with the quantization condition k = n the allowed energies are

En =
h̄2n2

2mR2
n = 1, 2, 3, ... (34)
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Problem 3: (20 pts)

Consider a particle of spin 1/2. We will use the eigenstates of the Ŝz operator as the basis vectors, such that

χz,↑ =

(
1
0

)
χz,↓ =

(
0
1

)
(35)

where χz,↑ represents spin-up in the z direction, and χz,↓ spin down in z.
The particle if is put into a uniform magnetic field pointing perpendicular to the z direction, such that

the energy associated with the particle’s spin is given by the Hamiltonian

Ĥ =

(
0 ε
ε 0

)
(36)

where ε is a constant (units of energy).

3a) Calculate the possible values of energy that could be measured for this system.

Solution: We want to find the eigenvalues of the matrix. We use the standard approach

det|Ĥ − λÎ| =
∣∣∣∣ −λ ε

ε −λ

∣∣∣∣ = ε2 − λ2 = 0 ⇒ λ = ±ε (37)

3b) Find the normalized eigenstates of the Hamiltonian

Solution We find the states

Ĥ

(
a
b

)
= ε

(
b
a

)
= λ

(
a
b

)
(38)

The first component of this equation gives

εb = ±εa ⇒ b = ±a (39)

The energy eigenstates are thus

~v1 =

(
a
a

)
~v2 ==

(
a
−a

)
(40)

Normalizing these vectors such that a2 + a2 = 1 implies a = 1/
√

2 and so

~v1 =
1√
2

(
1
1

)
~v2 =

1√
2

(
1
−1

)
(41)

3c) We measure the particle’s energy and find it to be in the lowest possible energy state. What is the
probability that a measurement of Ŝz returns +h̄/2 (i.e., spin up in the z direction)?

Solution The measurement collapses the particle to the ~v2 state. This is a superposition of Ŝz eigenstates,
as we can see

~v2 =
1√
2

(
1
−1

)
=

1√
2

(
1
0

)
− 1√

2

(
0
1

)
=

1√
2
~χz,↑ −

1√
2
~χz,↓ (42)

By the quantum postulates, the probability is the coefficient in front of ~χz,↑ squared, and so it is P = 1/2.

3d) A particle is initially the χz,↑ state. We wait some time t and measure the z-component of spin. What
is the probability that the measurement finds the particle to be in the χz,↓ state?

Solution: The problem is essentially similar to the neutrino oscillation (or rabbit-duck) problem done on
the homework. The eigenstates of the Hamiltonian are the stationary states. The initial state given can be
written as a superposition of energy eigenstates

χz,↑ =
1√
2
~v1 +

1√
2
~v2 (43)
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The time-dependence of the energy eigenstates are just given by a phase factor e−iωt. Define ω1 = E1/h̄
and ω2 = E2/h̄. The time-dependent result is

χ(t) =
1√
2
e−ω1t~v1 +

1√
2
e−ω2t~v2 (44)

Plugging in our results for ~v1, ~v2

χ(t) =
1√
2
e−ω1t

1√
2

(
1
1

)
+

1√
2
e−ω2t

1√
2

(
1
−1

)
(45)

=
1

2

(
e−iω1t + e−iω2t

e−iω1t − e−iω2t

)
(46)

The probability we want is the second component squared (corresponding to spin down in z). This is

P (z↓) =
1√
2

(
eiω1t − eiω2t

) 1√
2

(
e−iω1t − e−iω2t

)
(47)

=
1

2

(
1− eiω1t−iω2t − eiω2t−iω1t + 1

)
(48)

=
1

2
(2− 2 cos((ω2 − ω1)t)) (49)

Here ω2 − ω1 = ε/h̄− (−ε/h̄) = 2ε/h̄ and so

P (z↓) = 1− cos(2εt/h̄) (50)

We check that the probability is bounded by 0 and 1. If we wanted to double-check, we could also calculate
that

P (z↑) = 1 + cos(2εt/h̄) (51)

So that P (z↑) + P (z↓) = 1.

Another manipulation of the algebra would be to write the bottom componet of the array as

c↓ =
1

2
(e−iω1t − e−iω2t) =

1

2
e−iω1t/2e−iω2t/2(ei∆ωt − e−i∆ωt) (52)

where ∆ω = (ω2 − ω1)/2 = ε/h̄. This can then be written

c↓ =
1

2
e−iω1t/2e−iω2t/22 sin(∆ωt) = e−i(ω1+ω2)t/2 sin(∆ωt) (53)

Then the probability is
P (z↓) = |c↓|2 = sin2(εt/h̄) (54)

This is equivalent to the above result (as can be shown from using trig identities)
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Problem 4: (20 pts)

A certain thermodynamic system of fixed volume is described by the macroscopic variables U (internal
energy) and N (total number of particles). The number of microstates corresponding to a macrostate U,N
turns out to be given by

Ω(U,N) =
[
C(U/N)3/2

]N
(55)

where C is a constant.

4a) Determine an expression for the system temperature as a function of U and N .

Solution: We first calculate the entropy

S = NkB log Ω = NkB log
(
C(U/N)3/2

)
= NkB logC +NkB log

(
U3/2

)
−NkB log

(
N3/2

)
(56)

Using additional properties of the log this becomes

S = NkB logC +
3

2
NkB logU − 3

2
kB logN (57)

The temperature is defined as
1

T
=
∂S

∂U

∣∣∣∣
N

=
3

2

NkB
U

(58)

and so

T =
2

3

U

NkB
(59)

Now consider two such systems. System 1 is initially in a macrostate (U1 = 1 J, N1 = 1 NA) while System 2
is in a macrostate (U2 = 2 JN2 = 10NA). Here J denotes the energy unit Joules and NA is Avogadro’s
number.

4b) The two systems are put into thermal contact (the number of particles in each system is held fixed).
Is energy most likely to flow from System 1 to System 2 or vice versa?

Solution The temperatures are

T1 =
2

3

1J

NAkB
=

2

3

J

NAkB
T2 =

2

3

2J

10NAkB
=

4

30

J

NAkB
=

2

15

J

NAkB
(60)

we see that T2 < T1 so energy is likely to flow from System 1 to System 2.

4c) After these two systems come into thermal equilibrium, what is the energy of System 1 in Joules?

Solution The temperatures will be equal in equilibrium, thus

T1 = T2 ⇒ 2

3

U ′1
N1kB

=
2

3

U ′2
N2kB

(61)

where we use U ′1, U
′
2 to represent the final energies of the systems. This gives

U ′1
N1

=
U ′2
N2

⇒ U ′1 = U ′2
N1

N2
= U ′2

1

10
(62)

The total energy is a constant U = U1 + U2 = 3 J and so U ′2 = U − U ′1, which gives

U ′1 = (U − U ′1)
1

10
⇒ U ′1

(
1 +

1

10

)
= U

1

10
(63)

U ′1(10 + 1) = U ⇒ 11U ′1 = U (64)

And since U = 3J we have U ′1 = 3/11 J . System 1 did indeed gain energy.
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Problem 5: (10 pts)

A tube of length L is filled with gas, which is divided into two sides by a moveable wall. Initially, side 1
has volume V1 = x1A and side 2 has volume V2 = x2A. We fix the number of particles in each side to be
N1 = 2NA and N2 = NA. Both sides of the tube are kept at a constant temperature T .

5a) If the gas is an ideal gas, find the position x1 (in terms of L) of the wall where the pressures on both
sides of the wall are equal, P1 = P2.

Solution: The ideal gas law is

P =
NkBT

V
(65)

The balance P1 = P2 then implies

N1kBT

V1
=
N2kBT

V2
⇒ N1

V1
=
N2

V2
(66)

using V = xA and N1 = 2N2

N1

x1
=

2N1

x2
⇒ 1

x1
=

2

x2
⇒ x2 = 2x1 (67)

Since x1 + x2 = L we have x2 = L− x1

x2 = 2(L− x1) ⇒ 3x1 = 2L → x1 =
2

3
L (68)

Now consider the problem statistically. Imagine slicing up the tube into many small elements of length ∆x
such that there are M1 = x1/∆x slices on Side 1 and M2 = x2/∆x slices on Side 2. The number of ways of
distributing N particles among M elements is2

Ω =
(N +M − 1)!

(M − 1)!N !
(69)

We assume that N � 1 and M � 1.

5b) Assuming the wall can move freely and that the ergodic hypothesis holds, calculate the location x1 (in
terms of L) of the wall once equilibrium is reached.

Solution The entropy of the combined system is

S = S1 + S2 = kB log Ω1 + kB log Ω2 (70)

We want to maximize this with respect to the variable x1, which gives

∂S

∂x1
=
∂S1

∂x1
+
∂S2

∂x1
= 0 (71)

2We are ignoring any additional degrees of freedom that may add to the number of microstates due to e.g., the energy of
the particles.
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Now x2 = L− x1 so dx2 = −dx1. Using the chain rule

∂S

∂x1
=
∂S1

∂x1
+

(
∂S2

∂x2

)(
∂x2

∂x1

)
=
∂S1

∂x1
− ∂S2

∂x2
= 0 (72)

So the maximize system entropy occurs when

∂S1

∂x1
=
∂S2

∂x2
(73)

This is analogous to the equation when we put systems in thermal equilibrium. In fact, this derivative of S
is related to the statistical definition of pressure.

The problem gives x1 = M1∆x and x2 = M2∆x. So equilibrium can be written

∂S1

∂M1
=

∂S2

∂M2
(74)

From the given Ω, we can calculate the entropy of a system

S = kB log Ω = kB log[(N +M − 1)!]− kB log[(M − 1)!]− kb log[N !] (75)

Using Sterling’s approximation

S

kB
= (N +M − 1) log(N +M − 1)− (N +M − 1)− (M − 1) log(M − 1) + (M − 1)−NlogN +N (76)

= (N +M − 1) log(N +M − 1)− (M − 1) log(M − 1)−N logN (77)

From this we get

1

kB

∂S

∂M
= log(N +M − 1) + 1− log(M − 1)− 1 = log(N +M − 1)− log(M − 1) (78)

and so
∂S

∂M
= kB log

[
N +M − 1

M − 1

]
(79)

Setting this quantity equal on both sides gives

kB log

[
N1 +M1 − 1

M1 − 1

]
= kB log

[
N2 +M2 − 1

M2 − 1

]
(80)

exponentiating
N1 +M1 − 1

M1 − 1
=
N2 +M2 − 1

M2 − 1
(81)

N1

M1 − 1
− 1 =

N2

M2 − 1
− 1 (82)

N1

M1 − 1
=

N2

M2 − 1
(83)

using the now that N1 = 2N2

2N1

M1 − 1
=

N1

M2 − 1
⇒ 2

M1 − 1
=

1

M2 − 1
(84)

Since M � 1 we can drop the 1’s (we could have done this much earlier...)

M1 = 2M2 (85)

Multiply both sides by ∆x

∆xM1 = 2∆xM2 ⇒ x1 = 2x2 ⇒ x1 = 2(L− x1) (86)

From which we find

x1 =
2

3
L (87)

As found with the ideal gas law, but from a statistical calculation.
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