
M. Arcak EE C222/ME C237 NONLINEAR SYSTEMS Spring 2018

Midterm Solutions
March 14, 2018

The duration is 80 minutes. Each problem is worth 25 points. Closed book/notes; one

formula sheet allowed. Answers without justification do not receive full credit.

1. Consider the system

ẋ1 = −x1 +
µ

1 + x2

ẋ2 = −x2 +
µ

1 + x1
,

where µ > 0 is a positive parameter.

a) Show that the nonnegative quadrant R2
≥0 is positively invariant.

Solution: We can show that the nonnegative quadrant is positively invariant by in-

dividually proving that the half spaces x1 ≥ 0, x2 ≥ 0 are both positively invariant.

This can be done by proving a) that ẋ1 ≥ 0 whenever x1 = 0, x2 ≥ 0 and b) ẋ2 ≥ 0

whenever x2 = 0, x1 ≥ 0. When x1 = 0 and x2 ≥ 0,

ẋ1 =
µ

1 + x2
> 0

which proves invariance of the x1 ≥ 0 half space. A symmetric argument can be made

for invariance of the x2 ≥ 0 half space.

b) Show that a single equilibrium exists in the nonnegative quadrant.

Solution:

0 = −x1 +
µ

1 + x2
⇒ x1 =

µ

1 + x2

0 = −x2 +
µ

1 + x1
⇒ x2 =

µ

1 + x1

Substituting the expression for x1 into the x2 equation yields:

x2 =
µ

1 + µ
1+x2

=
µ(1 + x2)

1 + x2 + µ

Multplying both sides by 1 + x2 + µ yields

x2 + x22 + µx2 = µ+ µx2

⇒ x22 + x2 − µ = 0



The quadratic equation gives us two possible solutions

x2 = −1

2
± 1

2

√
1 + 4µ

When µ > 0, both solutions are real and only one solution exists in the nonnegative

orthant. Noting that the system dynamics are symmetric with respect to swapping x1
and x2, we derive the same equilibrium for x1.

(x1, x2) = (−1

2
+

1

2

√
1 + 4µ,−1

2
+

1

2

√
1 + 4µ)

c) Determine whether this equilibrium is stable or not using the linearization method.

Does your answer depend on the value of µ?

The Jacobian of our system is

J(x) =
∂f

∂x
(x) =

[
−1 −µ

(1+x2)2

−µ
(1+x1)2

−1

]

The trace of the Jacobian is −2 so there must exist at least one negative eigenvalue.

We use the determinant to distinguish between a stable and a saddle point.

det(J(x)) = 1− µ2

(1 + x1)2(1 + x2)2

Substituting in the equilibrium point from part 1b yields:

1− µ2

(1
2

+ 1
2

√
1 + 4µ)4

= 1− µ2

(1
2

+
√

1
4

+ µ)4
> 1− µ2

µ2
= 0

The strict inequality holds because shrinking the denominator of the subtracted term

causes the term to grow and
√
µ4 = µ2. As long as µ > 0 the determinant is strictly

positive so both eigenvalues must be the same sign. The equilibrium point is stable and

its stability characteristics do not depend on the value of µ.

d) Determine whether any periodic orbits exist in the nonnegative quadrant. Explain

your reasoning.

Solution: The system is time invariant and planar. Moreover, the divergence is not

identically zero and does not change sign in the nonnegative quadrant.

∇ · f(x) = −1− 1 = −2

Invoking Bendixson’s theorem implies that there are no periodic orbits that exist in

the nonnegative quadrant.
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2. a) For the matrix A below find P = P T > 0 such ATP + PA is negative semidefinite:

A =

[
0 1

−2 0

]
.

Solution: Consider the P matrix

P =

[
2 0

0 1

]
Substituting in to ATP + PA yields:

ATP + PA =

[
0 −2

1 0

] [
2 0

0 1

]
+

[
2 0

0 1

] [
0 1

−2 0

]
=

[
0 −2

2 0

]
+

[
0 2

−2 0

]
=

[
0 0

0 0

]
The zero matrix is negative semidefinite. One way to notice that this particular P

satisfies the inequality is to plot the phase portrait for the system and see that there

is an energy function that is conserved.

b) Does there exist P = P T > 0 such ATP + PA is negative definite? If your answer

is yes, produce such a P ; otherwise explain why none exists.

Solution: No, there does not exist a matrix P = P T > 0 such that ATP + PA

is negative definite. Existence of such a P would imply that the system ẋ = Ax is

asymptotically stable. The eigenvalues of A are on the imaginary axis so A is stable

but not asymptotically stable.

0 = det(sI − A) = det

([
s −1

2 s

])
= s2 + 2⇒ s = ±

√
2i

3. a) Show that the origin is globally asymptotically stable for the system

ẋ1 = x2

ẋ2 = −x2 − x31 − x51.

Solution:

Consider the following candidate Lyapunov function

V (x) =
1

4
x41 +

1

6
x61 +

1

2
x22.

This function is positive definite because if either x1 or x2 are non-zero then V (x) > 0.

Moreover, it is radially unbounded because ||x||2 → ∞ implies that either |x1| → ∞
or |x2| → ∞. Both would imply V (x)→∞.

V̇ = (x31 + x51)(x2) + (x2)(−x2 − x31 − x51)
= x31x2 + x51x2 − x22 − x31x2 − x51x2
= −x22
≤ 0
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While V̇ is only negative semidefinite, we can invoke the Lasalle-Krasovskii principle

to prove global asymptotic stability. Let S = {x : V̇ = 0} = {x : x2 = 0}. Within this

region, the system dynamics are

ẋ1 = 0

ẋ2 = −x31 − x51

The biggest invariant set in S is the origin. Any other point such that x1 6= 0 will

cause the system to exit S. The system is globally asymptotically stable.

b) Is it also exponentially stable? Explain your reasoning.

Solution: The proposition in Lecture 11 Page 1 says that the origin is exponentially

stable for ẋ = f(x), f(0) = 0 if and only if A = ∂f
∂x

∣∣
x=0

is Hurwitz and all of A’s

eigenvalues have strictly negative real components.

A =
∂f

∂x

∣∣∣
x=0

=

[
0 1

−3x21 − 5x41 −1

] ∣∣∣
x=0

=

[
0 1

0 −1

]
Because A is not full rank, it must contain a zero eigenvalue. A is therefore not Hurwitz,

and the system is not exponentially stable.

4. Determine whether each system below is input-to-state stable with respect to u. Justify

your answer in each case.

a) ẋ = −x− xu2

Solution: The system is ISS and satisfies the following ISS inequality with γ = 0.

|x(t)| ≤ |x(0)|e−t

More informally, any nonzero u will only cause x to approach the origin at a faster

rate than the system ẋ = −x.

b) ẋ1 = −x1 + x1x2, ẋ2 = −x2 + u

Solution: No, this system is not ISS. Consider the input where u(t) = x2(0) for all t.

This input u is bounded and ẋ2 = 0 for all t. If x2(0) > 1 then |x1(t)| is lower bounded

by a term e(x2(0)−1)t|x1(0)| that grows to infinity.

c) ẋ1 = x2, ẋ2 = −x1 + u.

Solution: No, this system is not ISS. This system exhibits a circular orbit around the

origin. Even with u = 0, no class-KL function β exists such that |x(t)| ≤ β(x(0), t)

because the function cannot decay to zero as t→∞. Alternatively, one could also drive

the system at its resonant frequency to create an unstable trajectory with a bounded

u.
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