Midterm Solutions

March 14, 2018
The duration is 80 minutes. Each problem is worth 25 points. Closed book/notes; one formula sheet allowed. Answers without justification do not receive full credit.

1. Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+\frac{\mu}{1+x_{2}} \\
\dot{x}_{2} & =-x_{2}+\frac{\mu}{1+x_{1}}
\end{aligned}
$$

where $\mu>0$ is a positive parameter.
a) Show that the nonnegative quadrant $\mathbb{R}_{\geq 0}^{2}$ is positively invariant.

Solution: We can show that the nonnegative quadrant is positively invariant by individually proving that the half spaces $x_{1} \geq 0, x_{2} \geq 0$ are both positively invariant. This can be done by proving a) that $\dot{x}_{1} \geq 0$ whenever $x_{1}=0, x_{2} \geq 0$ and b) $\dot{x}_{2} \geq 0$ whenever $x_{2}=0, x_{1} \geq 0$. When $x_{1}=0$ and $x_{2} \geq 0$,

$$
\dot{x}_{1}=\frac{\mu}{1+x_{2}}>0
$$

which proves invariance of the $x_{1} \geq 0$ half space. A symmetric argument can be made for invariance of the $x_{2} \geq 0$ half space.
b) Show that a single equilibrium exists in the nonnegative quadrant.

Solution:

$$
\begin{aligned}
& 0=-x_{1}+\frac{\mu}{1+x_{2}} \Rightarrow x_{1}=\frac{\mu}{1+x_{2}} \\
& 0=-x_{2}+\frac{\mu}{1+x_{1}} \Rightarrow x_{2}=\frac{\mu}{1+x_{1}}
\end{aligned}
$$

Substituting the expression for x_{1} into the x_{2} equation yields:

$$
x_{2}=\frac{\mu}{1+\frac{\mu}{1+x_{2}}}=\frac{\mu\left(1+x_{2}\right)}{1+x_{2}+\mu}
$$

Multplying both sides by $1+x_{2}+\mu$ yields

$$
\begin{aligned}
x_{2}+x_{2}^{2}+\mu x_{2} & =\mu+\mu x_{2} \\
& \Rightarrow x_{2}^{2}+x_{2}-\mu=0
\end{aligned}
$$

The quadratic equation gives us two possible solutions

$$
x_{2}=-\frac{1}{2} \pm \frac{1}{2} \sqrt{1+4 \mu}
$$

When $\mu>0$, both solutions are real and only one solution exists in the nonnegative orthant. Noting that the system dynamics are symmetric with respect to swapping x_{1} and x_{2}, we derive the same equilibrium for x_{1}.

$$
\left(x_{1}, x_{2}\right)=\left(-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 \mu},-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 \mu}\right)
$$

c) Determine whether this equilibrium is stable or not using the linearization method. Does your answer depend on the value of μ ?

The Jacobian of our system is

$$
J(x)=\frac{\partial f}{\partial x}(x)=\left[\begin{array}{cc}
-1 & \frac{-\mu}{\left(1+x_{2}\right)^{2}} \\
\frac{-\mu}{\left(1+x_{1}\right)^{2}} & -1
\end{array}\right]
$$

The trace of the Jacobian is -2 so there must exist at least one negative eigenvalue. We use the determinant to distinguish between a stable and a saddle point.

$$
\operatorname{det}(J(x))=1-\frac{\mu^{2}}{\left(1+x_{1}\right)^{2}\left(1+x_{2}\right)^{2}}
$$

Substituting in the equilibrium point from part 1b yields:

$$
1-\frac{\mu^{2}}{\left(\frac{1}{2}+\frac{1}{2} \sqrt{1+4 \mu}\right)^{4}}=1-\frac{\mu^{2}}{\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}\right)^{4}}>1-\frac{\mu^{2}}{\mu^{2}}=0
$$

The strict inequality holds because shrinking the denominator of the subtracted term causes the term to grow and $\sqrt{\mu}^{4}=\mu^{2}$. As long as $\mu>0$ the determinant is strictly positive so both eigenvalues must be the same sign. The equilibrium point is stable and its stability characteristics do not depend on the value of μ.
d) Determine whether any periodic orbits exist in the nonnegative quadrant. Explain your reasoning.
Solution: The system is time invariant and planar. Moreover, the divergence is not identically zero and does not change sign in the nonnegative quadrant.

$$
\nabla \cdot f(x)=-1-1=-2
$$

Invoking Bendixson's theorem implies that there are no periodic orbits that exist in the nonnegative quadrant.
2. a) For the matrix A below find $P=P^{T}>0$ such $A^{T} P+P A$ is negative semidefinite:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]
$$

Solution: Consider the P matrix

$$
P=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

Substituting in to $A^{T} P+P A$ yields:

$$
A^{T} P+P A=\left[\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The zero matrix is negative semidefinite. One way to notice that this particular P satisfies the inequality is to plot the phase portrait for the system and see that there is an energy function that is conserved.
b) Does there exist $P=P^{T}>0$ such $A^{T} P+P A$ is negative definite? If your answer is yes, produce such a P; otherwise explain why none exists.
Solution: No, there does not exist a matrix $P=P^{T}>0$ such that $A^{T} P+P A$ is negative definite. Existence of such a P would imply that the system $\dot{x}=A x$ is asymptotically stable. The eigenvalues of A are on the imaginary axis so A is stable but not asymptotically stable.

$$
0=\operatorname{det}(s I-A)=\operatorname{det}\left(\left[\begin{array}{cc}
s & -1 \\
2 & s
\end{array}\right]\right)=s^{2}+2 \Rightarrow s= \pm \sqrt{2} i
$$

3. a) Show that the origin is globally asymptotically stable for the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{2}-x_{1}^{3}-x_{1}^{5}
\end{aligned}
$$

Solution:

Consider the following candidate Lyapunov function

$$
V(x)=\frac{1}{4} x_{1}^{4}+\frac{1}{6} x_{1}^{6}+\frac{1}{2} x_{2}^{2}
$$

This function is positive definite because if either x_{1} or x_{2} are non-zero then $V(x)>0$. Moreover, it is radially unbounded because $\|x\|_{2} \rightarrow \infty$ implies that either $\left|x_{1}\right| \rightarrow \infty$ or $\left|x_{2}\right| \rightarrow \infty$. Both would imply $V(x) \rightarrow \infty$.

$$
\begin{aligned}
\dot{V} & =\left(x_{1}^{3}+x_{1}^{5}\right)\left(x_{2}\right)+\left(x_{2}\right)\left(-x_{2}-x_{1}^{3}-x_{1}^{5}\right) \\
& =x_{1}^{3} x_{2}+x_{1}^{5} x_{2}-x_{2}^{2}-x_{1}^{3} x_{2}-x_{1}^{5} x_{2} \\
& =-x_{2}^{2} \\
& \leq 0
\end{aligned}
$$

While \dot{V} is only negative semidefinite, we can invoke the Lasalle-Krasovskii principle to prove global asymptotic stability. Let $S=\{x: \dot{V}=0\}=\left\{x: x_{2}=0\right\}$. Within this region, the system dynamics are

$$
\begin{aligned}
& \dot{x}_{1}=0 \\
& \dot{x}_{2}=-x_{1}^{3}-x_{1}^{5}
\end{aligned}
$$

The biggest invariant set in S is the origin. Any other point such that $x_{1} \neq 0$ will cause the system to exit S. The system is globally asymptotically stable.
b) Is it also exponentially stable? Explain your reasoning.

Solution: The proposition in Lecture 11 Page 1 says that the origin is exponentially stable for $\dot{x}=f(x), f(0)=0$ if and only if $A=\left.\frac{\partial f}{\partial x}\right|_{x=0}$ is Hurwitz and all of A 's eigenvalues have strictly negative real components.

$$
A=\left.\frac{\partial f}{\partial x}\right|_{x=0}=\left.\left[\begin{array}{cc}
0 & 1 \\
-3 x_{1}^{2}-5 x_{1}^{4} & -1
\end{array}\right]\right|_{x=0}=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

Because A is not full rank, it must contain a zero eigenvalue. A is therefore not Hurwitz, and the system is not exponentially stable.
4. Determine whether each system below is input-to-state stable with respect to u. Justify your answer in each case.
a) $\dot{x}=-x-x u^{2}$

Solution: The system is ISS and satisfies the following ISS inequality with $\gamma=0$.

$$
|x(t)| \leq|x(0)| e^{-t}
$$

More informally, any nonzero u will only cause x to approach the origin at a faster rate than the system $\dot{x}=-x$.
b) $\quad \dot{x}_{1}=-x_{1}+x_{1} x_{2}, \quad \dot{x}_{2}=-x_{2}+u$

Solution: No, this system is not ISS. Consider the input where $u(t)=x_{2}(0)$ for all t. This input u is bounded and $\dot{x}_{2}=0$ for all t. If $x_{2}(0)>1$ then $\left|x_{1}(t)\right|$ is lower bounded by a term $e^{\left(x_{2}(0)-1\right) t}\left|x_{1}(0)\right|$ that grows to infinity.
c) $\quad \dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+u$.

Solution: No, this system is not ISS. This system exhibits a circular orbit around the origin. Even with $u=0$, no class- $\mathcal{K} \mathcal{L}$ function β exists such that $|x(t)| \leq \beta(x(0), t)$ because the function cannot decay to zero as $t \rightarrow \infty$. Alternatively, one could also drive the system at its resonant frequency to create an unstable trajectory with a bounded u.

