
Math 185-1
Final Exam
May 9, 2016

Name:

• You will have 175 minutes to complete the exam. The start time and end time will
be signaled by the instructor. Do not open the exam or write anything on the exam,
including on this cover sheet, until the exam has begun.

• Complete the following problems. In order to receive full credit, please provide rigorous
proofs and show all of your work and justify your answers. Unless stated otherwise,
you may use any result proved in class, the text, or in homeworks, but be sure to
clearly state the result before using it and to verify that all hypotheses are satisfied.

• This is a closed-book, closed notes exam. No electronic devices, including cellphones,
headphones, or calculation aids, will be permitted for any reason.

• The exam and all papers must remain in the testing room at all times. When you are
finished, you must hand your exam paper to the instructor. In the case of a fire alarm,
leave your exams in the room, face down, before evacuating. Under no circumstances
should you take the exam with you.

• If you need extra room for your answers, use the back side of each page. You may also
use those back sides as well as the spare blank pages at the end of the exam for scratch
work. If you must use extra paper, use only that provided by the instructor; make sure
to write your name on it and attach it to this exam. Do not unstaple or detach pages
from this exam.

• Do not remove or detach the formula sheet from the exam.

After reading the above instructions, please sign the following:

On my honor, I have neither given nor received any aid on this examination.
I have furthermore abided by all other aspects of the honor code with respect

to this examination.

Signature:
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Stereographic projection:

x = X/(1− Z) X = 2x/(|z|2 + 1)

y = Y/(1− Z) Y = 2y/(|z|2 + 1)

Z = (|z|2 − 1)/(|z|2 + 1).

Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Harmonic conjugate:

v(x, y) =

∫ y

y0

∂u

∂x
(x, t)dt−

∫ x

x0

∂u

∂y
(s, y0)ds+ C

v(B) =

∫ B

A

−∂u
∂y
dx+

∂u

∂x
dy.

Fractional linear transformation:

w = f(z) =
z − z0

z − z2

z1 − z2

z1 − z0

.

Mean value property:

u(z0) =

∫ 2π

0

u(z0 + reiθ)
dθ

2π
.

Cauchy integral formula:

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw.

Power series and Laurent series:

ak =
1

2πi

∮
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ.

Residue theorem: ∫
∂D

f(z)dz = 2πi
m∑
j=1

Res[f(z), zj].

Res[f(z), z0] = lim
z→z0

(z − z0)f(z) Res[f(z), z0] = lim
z→z0

d

dz
(z − z0)2f(z) Res

[
f(z)
g(z)

, z0

]
= f(z0)

g′(z0)

Argument principle:

1

2πi

∫
∂D

f ′(z)

f(z)
dz =

1

2π

∫
∂D

d arg(f(z)) = N0 −N∞.

Winding number:

W (γ, z) =
1

2πi

∫
γ

1

w − z
dw =

1

2π

∫
γ

d arg z.

Inverse function theorem:

f−1(w) =
1

2πi

∫
|ζ−z0|=ρ

ζf ′(ζ)

f(ζ)− w
dζ, |w − w0| < δ.
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1. (10 points) Determine the points z ∈ C for which f(z) = |z|2 is differentiable, and
determine where f(z) is analytic.

Solution: Consider the difference quotient

lim
∆z→0

f(z + ∆z)− f(z)

∆z
.

Using the fact that |z|2 = zz̄, we find that

lim
δz→0

f(z + δz)− f(z)

δz
= lim

∆z→0

(z + ∆z)(z̄ + ∆z)− zz̄
∆z

= lim
∆z→0

z̄∆z + z∆z + ∆z∆z

∆z

= lim
∆z→0

z̄ + ∆z +
∆z

∆z
z.

When z = 0, this equals 0, so f ′(0) exists. If z 6= 0, then letting ∆z = ε > 0, we find
that

lim
∆z→0

z̄ + ∆z +
∆z

∆z
z = lim

ε→0
z̄ + ε+

ε

ε
z

= z̄ + z.

On the other hand, letting ∆z = iε, we find

lim
∆z→0

z̄ + ∆z +
∆z

∆z
z = lim

ε→0
z̄ − iε+

−iε
iε
z

= z̄ − z.

Since the limits in the two directions are unequal, f ′(z) does not exists when z 6= 0.

Hence, f is differentiable only at z = 0, and thus, it is not analytic anywhere.
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2. (10 points) Let f(z) be a fractional linear transformation such that f(1) = 2+i, f(−1) =
i, and f(i) = −1 + i. Determine the image of the disk {z : |z| < 1} under f .

Solution: Since fractional linear transformations map circle and lines to either cir-
cles or lines, the unit circle |z| = 1 is sent to either a line or a circle.

As 1,−1, and i are points on the unit circle, their images 2 + i, i, and −1 + i are
also in the image of the unit circle. The three points determine a line y = 1 in the
codomain, so the image of the circle is a line.

The line divides the plane into two regions, and we must determine which is the
image of the disk |z| < 1. We note that as we traverse the circle counter-clockwise
from 1, we first pass through i and then −1, and the disk |z| < 1 lies to the left of
the curve.

Since fractional linear transformations are conformal, it follows that as we traverse
from f(1) = 2 + i to f(i) = −1 + i and then f(−1) = i, the image of the disk must
also lie of the left. Thus, the image of the disk |z| < 1 is the half-plane y > 1.
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3. (10 points) Let u(z) be a real-valued harmonic function on a domain D such that u(z) ≥
m for all z ∈ D. Show that if u(z0) = m for some z0 ∈ D, then u(z) = m for all z ∈ D.

Solution: Since ∆(−u) = −∆u = 0, it follows that −u(z) is harmonic. The as-
sumption that u(z) ≥ m implies that −u(z) ≤ −m for all z ∈ D. The maximum
principle then implies that if u(z0) = m for some z0 ∈ D, then −u(z0) = −m, so
that −u(z) = −m for all z ∈ D.

Hence u(z) = m.
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4. (10 points) Show that cos2 z + sin2 z = 1 for all z ∈ C.

Solution: We know that for x ∈ R, cos2 x + sin2 x = 1. Since R is a subset of C
with a non-isolated point, f(z) = cos2 z+ sin2 z and g(z) = 1 are analytic on C, and
f(x) = g(x) for x ∈ R, the Uniqueness Principle implies that f(z) = g(z) for all
z ∈ C.

Hence, cos2 z + sin2 z = 1 for all z ∈ C.
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5. (10 points) Suppose that f(z) is an analytic function that is surjective onto C and g(z)
has an essential singularity at z0. Show that f ◦ g has an essential singularity at z0.

Solution: First, note that since z0 is an isolated singularity of g(z), there exists a
δ > 0 such that g is analytic for 0 < |z − z0| < δ. As f(z) is analytic, then f ◦ g is
analytic for 0 < |z − z0| < δ. Hence, f ◦ g has an isolated singularity at z0.

Recall that z0 is an essential singularity of a function F if and only if for every w ∈ C,
there exists a sequence zn → z0 such that F (zn)→ w.

Let w ∈ C. By surjectivity of f , there exists a v ∈ C such that f(v) = w. By the
fact that z0 is an essential singularity of g, there exists a sequence zn → z0 such that
g(zn)→ v. Since f is analytic, and hence, continuous, we have that

lim
n→∞

f(g(zn)) = f( lim
n→∞

g(zn)) = f(v) = w.

Hence, z0 is an essential singularity of f ◦ g.
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6. (10 points) Compute ∫ ∞
0

(
√
x)−1

1 + x
dx,

by integrating around a keyhole (i.e. “Pacman”) contour.

Solution: We first define a branch of the square root function that is analytic
on the interior of the keyhole domain: Let z 7→

√
z be defined by the map z 7→

|z|1/2eiArg1(z)/2, where Arg1(z) is the branch of the argument such that 0 ≤ Arg1(z) <
2π.

Using this branch of the square root, define f(z) =
√
z
−1

1+z
. Then f(z) is analytic on

the interior of the keyhole contour except a simple pole at z = −1. We have that

Res[f(z),−1] =
√
−1
−1

1
= 1

i
by using Rule 3.

Therefore,
∫
γ
f(z)dz = 2πi1

i
= 2π by the Residue Theorem, where γ is the keyhole

contour.

Now, let γR and γε be the circular arcs centered about the origin of radius R and ε,
respectively. By the ML-estimate, we have that since |

√
z| =

√
R for z ∈ γR and

|1 + z| ≥ R− 1 for z ∈ γR, then∣∣∣∣∫
γR

f(z)dz

∣∣∣∣ ≤ 1√
R(R− 1)

2πR.

This goes to 0 as R → ∞. Similarly, |f(z)| ≤ 1√
ε(1−ε) on γε, so the ML estimate

implies that

|
∫
γε

f(z)dz| ≤ 1√
ε(1− ε)

2πε

which tends to 0 as ε→ 0.

Thus, if we take the limit as R→∞ and ε→ 0, we have that

2π = lim

∫
γ

f(z)dz

=

∫ ∞
0

√
x
−1

1 + x
dx+

∫ 0

∞

√
x
−1
e−2πi/2

1 + x
dx

= 2

∫ ∞
0

√
x
−1

1 + x
dx.

Therefore,
∫∞

0

√
x
−1

1+x
dx = π.
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7. (10 points) Determine the number of roots of z4−3z3+1 in the right half plane Re z > 0.

Solution: Let D be the half-disk of radius R in the right half plane. We will use
the argument principle on p(z) = z4 − 3z3 + 1 on the domain D, with R very large,
to count the number of roots of the function.

Let γR be the circular arc of radius R from −iR to iR. On γR, we have that if R is
sufficiently large, |z4| >> | − 3z3 + 1, so that p(z) ≈ z4. Then,∫

γR

d arg p(z) ≈
∫
γR

d arg z4 =

∫ π/2

−π/2
d arg(R4ei4θ) = 4π.

Now, we need to compute the change in argument as we traverse along the straight
line segment from iR to −iR. Note that p(iy) = y4 + 1 + 3iy3. So when R >> 1, we
have that p(iR) ≈ R4 + 3iR3, so that p(iR) is slightly above the positive real axis.
Along the straight line from iR to −iR, p(iy) only meets the real axis when y3 = 0,
or in other words, at y = 0. At y = 0, p(iy) = p(i0) = 1, so p(i0) is on the positive
real axis. Thus, the change in argument of p(z) from p(iR) to p(0) is approximately
0.

Similarly, we have that p(−iR) ≈ R4 − 3iR3, so p(−iR) is just below the positive
real axis. As p(i0) is on the positive real axis and p(iy) does not cross the real axis
again between p(i0) and p(−iR), the change in argument is approximately.

Hence,
∫
∂D
d arg p(z) ≈ 4π + 0 + 0.

By the argument principle the integral above is an integer multiple of 2π, so must
equal 4π. Moreover, it is equal to 2π(N0 − N∞), where N0 is the number of zeros
in D and N∞ is the number of poles of p(z)inD. As p(z) is analytic, N∞ = 0, so
N0 = 2, and p(z) has 2 zeros in the right half plane.
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8. (a) (5 points) Show that the winding number is locally constant – that is if γ is a
piecewise smooth closed curve and z0 ∈ C \ γ, there exists a δ > 0 such that
W (γ, z) = W (γ, z0) for all |z − z0| < δ.

Solution: Let W (γ, z) = 1
2πi

∫
γ

f ′(w)
f(w)−zdw. Then, W (γ, z) is an analytic function

in z for z /∈ γ, so in particular, it is continuous. Fixing z0 and letting ε = 1/2,
continuity at z0 implies that there exists δ > 0 such that for |z − z0| < δ, we
have that |W (γ, z) −W (γ, z0)| < 1/2. But as W (γ, z) is always an integer, it
follows that W (γ, z) = W (γ, z0) for |z − z0| < δ.

(b) (5 points) Let γ be the curve illustrated below with the point z0 as indicated.
Determine W (γ, z0).

Solution: The curve γ is simple, so by the Jordan curve theorem, W (γ, z0) is
equal to 0 or ±1, with the winding number being 0 if it is in the unbounded
component and ±1 if it is in the component bounded by γ.

Take a point z below z0 on the unbounded component outside the picture of the
curve. Draw a straight line between z and z0. By the Jump Theorem for the
winding number, we know that the winding number changes by ±1 each time
we cross γ. The straight line from z to z0 cross γ four times, so this implies that
W (γ, z0) must be even, so equal to 0.
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9. (a) (5 points) Suppose that {fn(z)}∞n=1 is a sequence of analytic functions on a domain
D that converges uniformly to f on D. Show that f(z) is analytic on D.

Solution: Fix z0 ∈ D. There exists an open ball |z − z0| < δ contained inside
D since D is open. Since fn(z) is analytic on D, the Cauchy integral formula
implies that for z ∈ D,

fn(z) =
1

2πi

∫
|w−z0|=δ

fn(w)

w − z
dw.

Since fn(z)→ f uniformly, it follows that if |z − z0| < δ/2, then fn(w)/(w− z)
converges uniformly to f(w)/(w − z) on |z − z0| = δ, as the denominator has
modulus bounded below by δ/2 for all |w− z| = δ. Thus, if |fn(w)− f(w)| < εn
where εn → 0, then |fn(w)/(w − z)− f(w)/(w − z)| < εn

δ/2
and εn

δ/2
→ 0.

Hence, the integrands converge uniformly on |w − z| = δ, so

f(z) = lim
n→∞

fn(z) = lim
n→∞

1

2πi

∫
|w−z0|=δ

fn(w)

w − z
dw =

1

2πi

∫
|w−z0|=δ

f(w)

w − z
dw.

From this expression and an exercise from the homework (Exercise III.1.6), we
see that f(z) is differentiable on |z − z0| < δ/2, so in particular, it is analytic
at z0. Since this holds for any arbitrary z0 ∈ D, then f is analytic on D.

(b) (5 points) Suppose also that fn(D) ⊆ D for all n. Show that f(D) ⊆ D. (Hint:
For z ∈ D, first conclude that lim

n→∞
fn(z) ∈ D̄ = D ∪ ∂D. Then apply the Open

Mapping Theorem.)

Solution: Fix z ∈ D. Since fn converges uniformly on D, it follows that
limn→∞ fn(z) exists. As D̄ = D ∪ ∂D is the set of limit points of D and
fn(z) ∈ D for all n, it follows that f(z) = limn→∞ fn(z) ∈ D̄.

To show that f(z) ∈ D, it suffices to show that f(z) /∈ ∂D. Recall that ∂D
consists of points such that every ε-ball around the point intersects both D and
DC . But since f is analytic by part (a), the Open Mapping Theorem says that
f(D) is open. Hence, for all z ∈ D, f(z) has an ε-ball around f(z) that is wholly
contained in f(D). We conclude then that f(z) /∈ ∂D, so f(D) ⊆ D.
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(This space intentionally left blank.)

Question: 1 2 3 4 5 6 7 8 9 Total

Points: 10 10 10 10 10 10 10 10 10 90

Score:
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