
EECS 16A Designing Information Devices and Systems I
Spring 2018 Midterm 1

Midterm 1 Solution

PRINT your student ID:

PRINT AND SIGN your name: ,
(last name) (first name) (signature)

PRINT your discussion section and GSI(s) (the one you attend):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. What did you do over winter break? (1 Point)

2. What activity do you really enjoy? (1 Point)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

3. System of Equations (4 points)

Solve the following system of equations using Gaussian elimination. If there is no solution, explain why.

x+3y− z = 4

4x− y+2z = 8

2x−7y+4z =−3

Solution:

1 3 −1 4
4 −1 2 8
2 −7 4 −3

 =⇒︸︷︷︸
R3←−2R1+R3

1 3 −1 4
4 −1 2 8
0 −13 6 −11


=⇒︸︷︷︸

R2←−4R1+R2

1 3 −1 4
0 −13 6 −8
0 −13 6 −11


=⇒︸︷︷︸

R3←R2−R3

1 3 −1 4
0 −13 6 −8
0 0 0 3


Final equation effectively means that 0 = 3, which is not possible, and implies that there is no solution to the
system of equations.
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PRINT your name and student ID:

4. Eig-dentical Eigenvalues (10 points)

(a) (2 points) Consider the following matrix:

A =

[
2 1
−1 a

]

Is~v =
[

3
−8

]
in the column space of A when a = 3? Justify your answer in 1-2 sentences.

Solution: When a = 3, the two columns of the matrix
[

2
−1

]
,
[

1
3

]
are linearly independent and thus

span all of R2, including~v. You can explicitly solve for the coefficients to obtain the linear combination
below, althought this is not necessary.[

3
−8

]
=

17
7

[
2
−1

]
+
−13

7

[
1
3

]
(b) (8 points) Solve for the value of a that yields the smallest possible identical eigenvalues for the matrix

A.
Solution:

det(A− Iλ ) = 0∣∣∣∣2−λ 1
−1 a−λ

∣∣∣∣= 0

(2−λ )(a−λ )− (−1)(1) = 0

λ
2− (2+a)λ +(2a+1) = 0

λ =
2+a±

√
(2+a)2−4(2a+1)

2
Now because we want identical eigenvalues, we know the part under the square root must sum to 0.

∴ (2+a)2−4(2a+1) = 0

a2 +4a+4−8a−4 = 0

a2−4a = 0

a(a−4) = 0

So we know that a = 4 and a = 0 both give us identical eigenvalues.
Now we must choose the a that minimizes the identical eigenvalues. Looking at both cases:

a = 4 : λ =
2+a

2
=

2+4
2

=
6
2
= 3

a = 0 : λ =
2+a

2
=

2+0
2

=
2
2
= 1

a = 0 clearly gives us the smaller identical value of the two possibilities and is therefore the solution.
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PRINT your name and student ID:

5. Nullspace (8 points)

M =

1 0 4
1 2 6
0 1 x


(a) (3 points) Find all the values for x such that M has a trivial nullspace (this means that the nullspace

contains only the zero vector).
Solution: There is a trivial nullspace if the matrix is full rank, so we use Gaussian elimination to find
the appropriate value(s) of x. 1 0 4

1 2 6
0 1 x

 =⇒︸︷︷︸
R2←R2−R1

1 0 4
0 2 2
0 1 x


=⇒︸︷︷︸

R3←3R3

1 0 4
0 2 2
0 2 2x


For the second and third rows to be linearly independent, we need

2x 6= 2

⇒ x 6= 1

(b) (5 points) Find a value for x such that it has a nontrivial nullspace and solve for the nullspace.
Solution: From part (a), we set x = 1 and row reduce to get1 0 4

0 2 2
0 0 0

x
y
z

= 0

Then we set z as our free variable and express x and y in terms of z.
From row 2 we have

2y+2z = 0,⇒ y =−z

From row 1 we have
x+4z = 0,⇒ x =−4z

Thus we have the vector below is a basis for the nullspace.−4
−1
1
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PRINT your name and student ID:

6. Vectors and Bases and Spans, Oh My! (6 points)

A =


1

2
3

 ,
2

8
5


B =


4

0
0

 ,
0

0
2

 ,
0

3
0

 ,
0

0
0

 ,
5

3
2


C =



√

3
2
1
2
0

 ,
 1

2√
2

2
0

 ,
0

0
1


D =


 2

4.5
5

 ,
 0.5

0
3.75

 ,
 1.5

4.5
1.25


(a) (2 points) Select from (A), (B), (C), (D) all sets of vectors above that span R3, and write their corre-

sponding letter below. If none span R3, write "none".
Solution: The sets that span R3 are (B) and (C).
(A) only contains two vectors, which will never be enough to span R3; the vectors of (D) form a
linearly dependent set:  2

4.5
5

−
 0.5

0
3.75

−
 1.5

4.5
1.25

=

0
0
0


(b) (2 points) Select from (A), (B), (C), (D) all sets of vectors above that form a basis for R3, and write

their corresponding letter below. If none form a basis for R3, write "none".
Solution: The set that is a basis for R3 is (C).
Sets of vectors that do not span R3 cannot form a basis for it, so the answer cannot be (A) or (D).
Additionally, a basis must be composed of linearly independent vectors, so since (B) contains the zero
vector, it is not a linearly independent set and cannot be a basis for anything.

(c) (2 points) Can a set that contains the zero vector ever be a basis for Rn? Explain in one or two sentences
why or why not.
Solution: It cannot, because any set of vectors containing the zero vector is linearly dependent, and
all vectors in a basis must be linearly independent.

EECS 16A, Spring 2018, Midterm 1 5



PRINT your name and student ID:

7. Proofs! Oh null! (10 points)

(a) (3 points) Show that if~x ∈ Null(A) then A~x+A2~x+ · · ·+An~x =~0.
Solution:

A~x+A2~x+ · · ·+An~x = (I+A+A2 + · · ·+An−1)A~x

= (I+A+A2 + · · ·+An−1)~0

=~0

(b) (4 points) Suppose we have a square matrix A with full rank and a matrix B. Show that Null(AB) =
Null(B).
Solution: From above, we know that a vector~x in the nullspace of B is also in the nullspace of AB.
Now we must show that if a vector ~x is in the nullspace of AB, it is also in the nullspace of B. Note
that A is invertible.

AB~x =~0

A−1AB~x = A−1~0

B~x =~0

Alternative proof:
Since A is invertible, its nullspace is trivial. This means if A~y =~0, then~y =~0. So if AB~x = A(B~x) = 0,
then B~x is in the nullspace of A (B~x=~y=~0), which means that B~x=~0 since A is full rank. So, the only
vectors that are in the nullspace of AB are the vectors in the nullspace of B, so Null(AB) = Null(B).

(c) (3 points) Conceptually, if a state-transition matrix has a non-trivial nullspace (i.e. non-zero) is the
information about previous states preserved? Circle your answer, then give 1-2 sentences of justifica-
tion.

Yes No Sometimes

Solution: No. If the state-transition matrix has a non-trivial nullspace, then the matrix is non-
invertible. If the matrix is non-invertible, then you cannot solve for a previous state using the state-
transition matrix. Therefore, information about previous states is not fully preserved.

EECS 16A, Spring 2018, Midterm 1 6



PRINT your name and student ID:

8. Linear Algebra in a Pinch! (16 points)

As you look at your smartphone to get Google Maps directions to TeaOne in Cory Hall, you realize that
your smartphone is doing exactly what you do in class–linear algebra! As your fingers apply gestures to the
screen, the phone is performing matrix transformations on the screen image.

In the following parts, we represent coordinates before transformation as ~x =
[
x1 x2

]T and coordinates

after transformation as ~x′ =
[
x′1 x′2

]T . Although specific points are labeled, the transformation applies to
all points in the (x1,x2) plane.

(a) (5 points) You pinch the screen to zoom out, as shown in the figure below:

The point represented by a dot moves from (0,3) to (0,2), and the point represented by a star moves
from (−3,−1.5) to (−2,−1). What is the transformation matrix, A, such that ~x′ = A~x for this trans-
formation?
Solution: Looking at each dimension, we see that both x′1 and x′2 are scaled by 2

3 . Mathematically,
the transformation can be written as a system of equations with 4 unknowns. Using the given two
points, the matrices are: [

0
2

]
=

[
a b
c d

][
0
3

]
[
−2
−1

]
=

[
a b
c d

][
−3
−1.5

]
These lead to the following equations: 3b = 0, 3d = 2, −3a−1.5b =−2, and −3c−1.5d =−1

Therefore a = 2
3 ,b = 0,c = 0 and d = 2

3 , and the resulting tranformation matrix is A =

[
2/3 0
0 2/3

]
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(b) (5 points) Smartphones are smart, so if you rotate your phone, the map will reorient itself to make
sure you can read it! That is, if you rotate your phone 90° clockwise, the map will rotate 90° counter-
clockwise relative to the phone, as shown below.

The point represented by a dot moves from (0,3) to (−3,0), and the point represented by a star moves
from (−3,−1.5) to (1.5,−3). What is the transformation matrix, R, such that ~x′ = R~x for this trans-
formation?

Solution: Our rotation matrix is of the form R =

[
cosθ −sinθ

sinθ cosθ

]
, where θ is the angle the image

as been rotated. Since we are rotating the phone 90° clockwise, this corresponds to θ = 90° on our
coordinate system, giving us:

R =

[
cos(90°) −sin(90°)
sin(90°) cos(90°)

]
=

[
0 −1
1 0

]
A similar method used in the previous part can also be used to solve the problem: namely solving a
system of four unknowns. Using the two points, the matrices are:[

0
3

]
=

[
a b
c d

][
−3
0

]
[

1.5
−3

]
=

[
a b
c d

][
−3
−1.5

]
Leading to equations: 3b =−3, 3d = 0, −3a−1.5b = 1.5, and −3c−1.5d =−3, and

R =

[
0 −1
1 0

]
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(c) (6 points) So far, we have only done transformations that involve rotation and scaling, but another key
feature of Google Maps is that we can scroll laterally across a map, as shown below.

The point represented by a dot moves from (0,2) to (2,2), and the point represented by a star moves
from (−2,−1) to (0,−1).

In the previous parts we were able to represent the map transformations in the form

~x′ = A~x+~b

(Previously~b =~0.) What are A and~b for the scrolling operation above? Is this a linear transformation?
Solution: The scrolling operation is represented by

A =

[
1 0
0 1

]
~b =

[
2
0

]
This is not a linear transformation since~b 6=~0. One way to see this is that an input of (0,0) does not
yield an output of (0,0).

Fun fact! If you directly plug in the points’ coordinates and solve for a single transformation matrix,
A, you can by chance find a solution that fits the two points explicitly given! However, the scrolling
operation should be true for all points on the map, and without~b, this is not possible. Once again, you
can show this by testing (0,0), which does not work.
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PRINT your name and student ID:

9. Mining Population (20 points)
There is a population of cryptocurrency miners. These miners are primarily interested in two coins: Oski-
Coin and BearCoin, and they switch between mining the two coins in a predictable way. Every week, 20%
of OskiCoin miners switch to BearCoin and 30% of BearCoin miners switch to OskiCoin. The remaining
miners keep mining the same coin for the following week.

Let s1[n] be the number of miners of OskiCoin on week n and s2[n] be the number of miners of BearCoin on
week n.

~s[n] =
[

s1[n]
s2[n]

]
(a) (2 points) Draw a well-labeled directed graph showing how the population of miners changes each

week. Be sure to label each node and place appropriate weights on each edge.

Solution:

s1[n] s2[n]

0.2

0.3

0.8 0.7

(b) (2 points) Determine the state transition matrix A.

Solution: The state transition matrix describes the relationship of the state vector from one timestep
to the next:

~s[n+1] = A~s[n]

A =

[
0.8 0.3
0.2 0.7

]

(c) (5 points) Find the eigenvalues (λ1 . . .λn) and eigenvectors (~v1 . . .~vn) of A.

Solution:
We can write out the characteristic polynomial for A, or we can determine the eigenvalues by inspec-
tion. We denote the eigenvalues by λ1 and λ2, in decreasing order.

(0.8−λ )(0.7−λ )−0.06 = 0

0.56−0.7λ −0.8λ +λ
2−0.06 = 0

0.5−1.5λ +λ
2 = 0
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λ =
1.5±

√
2.25−4(0.5)

2

=
1.5±0.5

2
λ1 = 1

λ2 = 0.5

Once we’ve determined the eigenvalues, we can solve for the eigenvectors. We start by solving for the
eigenvector~v1 corresponding to λ1 = 1:

A− I =
[
−0.2 0.3
0.2 −0.3

]
∼
[

2 −3
0 0

]
=⇒ ~v1 =

[
3
2

]
We proceed with solving for the eigenvector~v2 corresponding to λ2 = 0.5:

A−0.5I =
[

0.3 0.3
0.2 0.2

]
∼
[

1 1
0 0

]
=⇒ ~v2 =

[
1
−1

]

(d) (5 points) Express
[

5
0

]
in the coordinate system of the eigenvectors, V = {~v1, . . . ,~vn}.

Solution:
We can solve this problem by inspection or by computation. By inspection:[

5
0

]
=~v1 +2~v2

where~v1 and~v2 are the eigenvectors determined in the solution to the previous part.
Alternatively, note that this is a change of basis problem. We are looking for weights u1 and u2 such
that

~v1u1 +~v2u2 =

[
5
0

]
.
We can rewrite this equation as
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 | |
~v1 ~v2
| |

[u1
u2

]
=

[
5
0

]
.
We can simply solve for u1 and u2 through Gaussian elimination.
We plug in the values for the eigenvectors and rewrite the equation as an augmented matrix:

[
3 1 5
2 −1 0

]
=⇒︸︷︷︸

R2←R1+R2

[
3 1 5
5 0 5

]

=⇒︸︷︷︸
swap R1,R2

[
5 0 5
3 1 5

]

=⇒︸︷︷︸
R1←R1/5

[
1 0 1
3 1 5

]

=⇒︸︷︷︸
R2←R2−3R3

[
1 0 1
0 1 2

]

In both cases, we can see that u1 = 1, and u2 = 2, for our eigenvectors~v1 and~v2.

Your answer may vary, depending on the magnitude of your eigenvalues. As long as~v1u1+~v2u2 =

[
5
0

]
,

then you will receive full credit.

(e) (6 points) If we start with 1000 miners mining OskiCoin and 0 miners mining BearCoin, then what
will the steady state distribution of miners be?
Solution: Find limn→∞~s[n].

Note that we can rewrite~s[0] as 200
[

5
0

]
. This means we can reuse our result from the previous part to

this problem.

~s[n] = An~s[0]

~s[n] = An
(

200
[

5
0

])
= An ·200(~v1 +2~v2)

= 200 ·An~v1 +400 ·An~v2

= 200 ·λ n
1~v1 +400 ·λ n

2~v2

Note that λ1 = 1 and λ2 = 0.5. This tells us:

lim
n→∞

λ
n
1 = 1

lim
n→∞

λ
n
2 = 0
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We can drop off the second term of the summation, leaving us with:

lim
n→∞

~s[n] = 200 ·~v1

=

[
600
400

]
Therefore, in the steady state, there are 600 miners mining OskiCoin, and 400 miners mining BearCoin.
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PRINT your name and student ID:

10. Bad Barometers (20 points)

Two scientists, Alice and Bob, want to determine the air pressure at the bottom and the top of Mt. Diablo.
They know that pressure changes linearly with altitude. We represent the air pressure at the top and bottom
of the mountain as a vector:

~p =

[
pbottom

ptop

]
Scientist Alice first takes a pressure measurement at the bottom of the mountain. Then she starts hiking up.
10% of the way up she she takes a second measurement. She knows she can invert her system of equations,
so she turns around. We can represent Alice’s measurements as

~ma = Aa~p where Aa =

[
1 0

0.9 0.1

]
Scientist Bob also takes a pressure measurement at the bottom of the mountain. He starts hiking and is
enjoying the view so he hikes 50% of the way to the top where he stops and takes a second measurement.
We can represent Bob’s measurements as

~mb = Ab~p where Ab =

[
1 0

0.5 0.5

]
Unfortunately, both scientists have old barometers that don’t work very well, so rather than measuring the
true pressure, they measure the pressure plus some offset,~s. We define~q to be the calculated pressure based
on the inaccurate measurement:

~ma +~sa = Aa~qa ~mb +~sb = Ab~qb

We are interested in the error,~e, which is the difference between the true pressure and the calculated pressure:

~ea =~qa−~p ~eb =~qb−~p

(a) (4 points) Determine an expression for~ea as a function of Aa and~sa.
Solution:

Find expressions for ~p and~qa:

~p =A−1
a ~ma

~qa =A−1
a (~ma +~sa)

Plug into the expression for~ea:

~ea =~qa−~p

~ea =A−1
a (~ma +~sa)−A−1

a ~ma

~ea =A−1
a ~sa
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(b) (6 points) Suppose that~sa =~sb =

[
−1
1

]
. This means that our scientists measure pressure that is 1 kPa

too low in their first measurement and 1 kPa too high in their second measurement. (Both scientist
have very similar old barometers, so they have the same offset for both measurements.)

Calculate Alice’s error,~ea, and Bob’s error,~eb.
Solution: We use the expression found in Part (a). For Alice’s error:

A−1
a =

[
1 0
−9 10

]
~ea =A−1

a ~sa =

[
1 0
−9 10

][
−1
1

]
~ea =

[
−1
19

]
For Bob’s error:

A−1
b =

[
1 0
−1 2

]
~eb =A−1

b ~sb =

[
1 0
−1 2

][
−1
1

]
~eb =

[
−1
3

]
Bob’s measurement matrix yields lower error than Alice’s measurement matrix.

(c) (6 points) Consider a general invertible, diagonalizable measurement matrix A ∈ Rn×n with eigenval-
ues λ1 . . .λn and corresponding eigenvectors~v1 . . .~vn, and a general offset vector~s ∈ Rn. Show that

~e =
n

∑
i=1

αi

λi
~vi

where α1 . . .αn are scalar values such that ∑
n
i=1 αi~vi =~s.

Solution:

In Part (a) we showed

~e =A−1~s

We can substitute in the express for~s given in the problem:

~e =A−1
n

∑
i=1

αi~vi

~e =
n

∑
i=1

αiA−1~vi

By the definition of eigenvalues and eigenvectors, we know

λi~vi =A~vi

A−1
λi~vi =~vi

A−1~vi =
1
λi
~vi
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We can substitute this into the equation for~e. You may have also already known that the eigenvalues
of A−1 are 1

λi
in which case the derivation above is not necessary.

~e =
n

∑
i=1

αi
1
λi
~vi

Alternative solution:

We can diagonalize A as follows:

A =VDV−1

where V as a matrix with the eigenvectors as it’s columns, and D is a diagonal matrix with the corre-
sponding eigenvalues along the diagonal. Plugging this into the expression for~e from Part (a) gives

~e =A−1~s

~e =
(
VDV−1)−1

~s

~e =VD−1V−1~s

We define ~α as a vector that contains α1 . . .αn. The following expressions are equivalent:

n

∑
i=1

αi~vi =~s

V~α =~s

We substitute this expression for~s into the expression for~e above.

~e =VD−1V−1~s

~e =VD−1V−1V~α

~e =VD−1~α

Recalling that the inverse of a diagonal matrix is the inverse of each element

~e =V


αi
λi
...

αn
λn


~e =

n

∑
i=1

αi

λi
~vi

Common Mistakes:
• Stating A−1 = 1

λ
, A = λ , or A−1 = ∑

1
λi

. This commonly was seen when trying to plug in A−1

while outside the summation. For example, stating~e = A−1~s = A−1
∑αi~vi =

1
λ

∑αi~vi is incorrect.
• A−1 =V D−1V−1 not V−1D−1V
• Trying to write A as a summation, such as stating A = ∑~viλi~vi

−1. (Note that vectors do not have
inverses)

• Assuming that diagonal matrices are commutative with non-diagonal matrices
• Assuming that~s is an eigenvector of A
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• Trying to split the summation incorrectly. For example, stating ∑
αi~vi
λi

= ∑αi~vi
∑λi

= ~s
∑λi

is not correct
since summing fractions is not the same as summing the numerator and denominator separately.

(d) (4 points) You calculate the eigenvalues and eigenvectors for Aa and Ab to be the following:

Aa Ab
λ1 = 1 λ1 = 1
λ2 = 0.1 λ2 = 0.5

v1 =

[
0
1

]
v2 =

[
1
−1

]
v1 =

[
0
1

]
v2 =

[
1
−1

]
Based on the equation in Part (c) and the eigenvalues and eigenvectors above, which matrix (Aa or Ab)
is more sensitive to inaccurate measurements? In other words, which will have a larger error~e? Does
this agree with the trend you saw in Part (b)?
Solution: Aa has a smaller eigenvalue so will have larger error according to the equation in Part (c),
since the eigenvalues are in the denominator. Note that both Aa and Ab have the same eigenvectors
and will therefore have the same αi for a given noise vector.
In Part (b), Aa had much larger error, so this matches what we saw in Part (b).
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