Name

February 9, 2018

SID

Professor Saykally

TA _

- 1. (20) _____
- 2. (30) _____
- 3. (10) _____
- 4. (15) _____
- 5. (10) _____
- 6. (15) _____

TOTAL EXAM SCORE (100)

$$rate = -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = +\frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$$

$$c = c_0 e^{-k \cdot \xi} \qquad \qquad \ln k = \ln A - \frac{E_a}{RT}$$

$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.6931}{k} \qquad \qquad \frac{d[P]}{dt} = k_2 [ES] = \frac{k_2 [E]_0 [S]}{[S] + K_m}$$

$$\frac{1}{c} = \frac{1}{c_0} + 2kt$$

$$k = A e^{-E_a/RT}$$

$$A = 2d^2 N_A \sqrt{\frac{\pi RT}{\mu}} P$$

Rules:

- Work all problems to 2 significant figures
- No lecture notes or books permitted
- No word processing calculators or cell phones
- Time: 50 minutes
- Show all work to get partial credit; do not write outside the boxes.
- Periodic Table, Tables of Physical Constants, Equations, and Conversion Factors included

1. (10+10 points) For the reaction

$$2 \text{ N}_2\text{O}_5(g) \rightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$$

the currently accepted mechanism is:

$$N_2O_5 \rightleftharpoons NO_2 + NO_3$$

fast, at equilibrium (k_1, k_{-1})

$$NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO$$

slow (k_2)

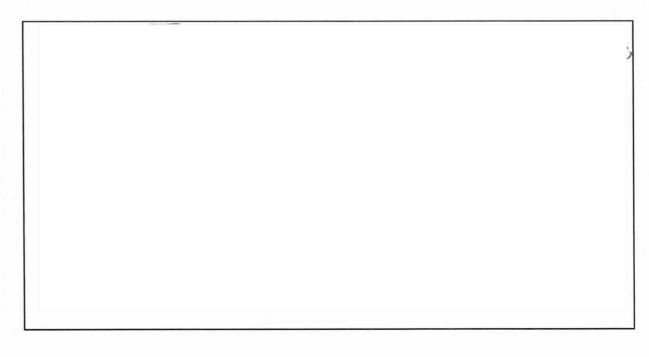
$$NO + NO_3 \rightarrow 2 NO_2$$

fast (k_3)

a) Write the differential rate law for this reaction.

Suppose that the k_1 , k_{-1} and	ka reactions are all	slow Solve for the	e steady-state val	ue of INO ₂

2. (1 peroxid		In class, we demonstrated the disproportionation reaction of hy-	drogen
peroxiu	e.	$2 \text{ H}_2\text{O}_2(aq) \rightarrow 2 \text{ H}_2\text{O}(l) + \text{O}_2(g)$	
A	The activation end to reaction at 25°C	ergy for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction of collisions cannot be serged for this reaction is 76 kJ/mol. What fraction is 76 kJ/mol.	an lead
			.5
B)) Addition of the el the rate by a facto	ectron transfer catalyst MnO ₂ (s) to the peroxide solution accer of 1.0×10^{10} . What is the corresponding value of E_a ?	elerates
C	The uncatalyzed remin ⁻¹ . If the initial	eaction follows first order kinetics with respect to H_2O_2 with $k =$ concentration is 0.35 moles/L, what is the concentration after 1	0.0410 0 min?
n			
			T.


3. (10 points)	Certain bacteria use the enzyme penicillinase to decompose penicillin and
render it inactive.	The Michaelis-Menten constants for this enzyme and substrate are

$$K_{\rm m} = 5.3 \times 10^{-5} \text{ mol L}^{-1}$$

 $k_2 = 2.6 \times 10^3 \text{ s}^{-1}$.

At what substrate concentration will the rate of decomposition be half of the maximum rate?

(15 points) Use collision th			

 $2~NO_2 \rightarrow 2~NO + O_2$ at 500 K. Take the average diameter of an NO_2 molecule to be 2.6 \times 10 $^{-10}$ m and the steric factor as 5.0×10^{-2} .

5. (10 points) The rate for the reaction

$$OH^{-}(aq) + NH_{4}^{+}(aq) \rightarrow H_{2}O(l) + NH_{3}(aq)$$

is the first order in both OH⁻ and NH₄⁺ concentrations and the rate constant k at 20°C is 3.4×10^{10} L mol⁻¹ s⁻¹. Suppose 1.00 L of a 0.0010 M NaOH solution is rapidly mixed with the same volume of 0.0010 M NH₄Cl solution. Calculate the time (in seconds) required for the OH⁻ concentration to decrease to a value of 1.0×10^{-5} M.

3		
		*
		y - 1
	*	
		-
		*
		a .

6. (15 points) In class, we measured the rate of the "iodine clock" reaction at several temperatures. Use the following data to calculate E_a for this reaction (t is the time required for blue color to appear):

<u>T (°C)</u>	t (sec)		
17.5	26		
10.5	34		

	1 2	17.5 10.5	26 34		
				-	
					7.
					, , , , , , , , , , , , , , , , , , ,
					-
)					
)					
- 1					