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30.2 Fall 2017 Midterm 2

1. For each matrix below, write the expression for eAt

(a)

A1 =

[
1 3
−3 1

]
, eA1t =

(b)

A2 =

[
−2 0

0 4

]
, eA2t =

(c)

A3 =

[
−3 1

0 −3

]
, eA3t =

(d)

A4 =

[
−2 + j5 0

0 −2− j5

]
, eA4t =

(e)

A5 =

[
0 −4
4 0

]
, eA5t =

2. Consider the quadratic polynomial p(s), which depends on two real-valued parameters
β1 and β2,

p(s) = s2 − s+ 1 + β1(7s+ 4) + β2(5s+ 3)

Find the values of β1 and β2 so that the roots of p(s) are at {−2 + j1,−2− j1}. Hint:
What quadratic polynomial has roots at {−2 + j1,−2− j1}
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3. When we studied studied how Simulink worked, we saw that in order to simulate an
interconnection of dynamical systems, the code simply needed to “call” each individual
system, often in a specific order, in order to determine the entire state-derivative,
and then do this repeatedly to compute an approximate, numerical solution to the
ODEs. This strategy of keeping all of the systems separate provides generality that
is especially useful when simulating interconnections of systems that are nonlinear.
For interconnections of linear systems (governed by state equations), we can often
explicitly determine the state equations of the interconnection, since all of
the necessary substitutions are simple (because of linearity). That is the task
in this problem.

Suppose the plant P is described by

P :
ẋ(t) = Ax(t) + Ed(t) +Bu(t)
y(t) = Cx(t)

where A,E,B,C are matrices with dimensions

A ∈ Rn×n, E ∈ Rn×v, B ∈ Rn×m, C ∈ Rq×n

and the signals are of dimensions

x(t) ∈ Rn, d(t) ∈ Rv, u(t) ∈ Rm, y(t) ∈ Rq

Suppose the controller is also described by a linear system model, namely

C :
ż(t) = Fz(t) +Gr(t) +Hym(t)
u(t) = Jz(t) +Kr(t) + Lym(t)

where F,G,H, J,K, L are matrices of dimension

F ∈ Rw×w, G ∈ Rw×f , H ∈ Rw×q, J ∈ Rm×w, K ∈ Rm×f , L ∈ Rm×q,

and the signals are of dimensions

z(t) ∈ Rw, r(t) ∈ Rf

The simple model for sensor-noise is ym(t) = y(t) + η(t) where η(t) ∈ Rq.

The (familiar) block diagram is:

C P

-r

ym

-d

-

?u

-
y

?g� η++

-

The task in this problem is to find the state-equation model for the closed-loop system,
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with

inputs =

 r
d
η

 , states =

[
x
z

]
, outputs =

[
y
u

]

Task/Question: Fill in the “’block” 4× 5 matrix the correctly describes the closed-
loop system.



ẋ(t)

ż(t)

y(t)

u(t)


=







x(t)

z(t)

r(t)

d(t)

η(t)


Make sure that your matrix products are in the correct order (nothing is scalar here,
so you should not be sloppy about order). If you have time, convince yourself that all
the dimensions make sense! That will also help you find errors...

4. Suppose A ∈ R3×3 and AV = V Λ, where

V =

 −1 + j4 −1− j4 0
2− j1 2 + j1 1

6 6 −1

 , Λ =

 −2 + j2 0 0
0 −2− j2 0
0 0 −3


Find matrices W ∈ R3×3 and Γ ∈ R3×3 (note - these are real-valued matrices, in
contrast to V and Λ, which are complex) such that

AW = WΓ

where W is invertible, and Γ is “block-diagonal”. Note: You do not have to prove
that W is invertible, but whatever you write down should be invertible.

5. A one-state plant, P is governed by equations

ẋ(t) = Ax(t) +B1d(t) +B2u(t), y(t) = Cx(t)
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where x is the state of the plant, d is an external disturbance, and u is the control
variable. The plant output is y. The constants A,B1, B2, C are referred to as the plant
parameters, and are assumed known, with B2 6= 0 and C 6= 0.

A feedback control system is proposed, which uses the reference input r and measures
y (no measurement noise for this problem, to keep the notation to a minimum) to
produce u. The goal of control is

Goal1: closed-loop should be stable

Goal2: the eigenvalues of the closed-loop system can be assigned to desired values by
appropriate choices of the parameters within the controller’s equations.

Goal3: steady-state gain from r → y should equal 1

Goal4: steady-state gain from d→ y should equal 0

Goal5: the objective in Goal3 should be robust to “modest” changes in the plant
parameters. Obviously, if Goal3 is unachievable, then Goal5 is also unachievable.

Goal6: the objective in Goal4 should be robust to “modest” changes in the plant
parameters. Obviously, if Goal4 is unachievable, then Goal6 is also unachievable.

(a) Consider a proportional controller of the form

u(t) = KP (r(t)− y(t))

Which goals are achievable (by proper choice of KP ), and which goals are un-
achievable (regardless of the choice)? Hint: if you are unsure about acheiv-
ing Goal1 and/or Goal2 for any of these problems, consider the plans ẋ(t) =
x(t) + u(t), y(t) = x(t), which is a simple unstable plant on which you can gain
insight.

(b) Consider a proportional controller of the form

u(t) = K1r(t) +K2y(t)

Which goals are achievable (by proper choice of K1 and K2), and which goals are
unachievable (regardless of the choice)?
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(c) Consider an integral controller of the form

q̇(t) = r(t)− y(t), u(t) = KIq(t)

Which goals are achievable (by proper choice of KI), and which goals are un-
achievable (regardless of the choice)?

(d) Consider a proportional/integral controller of the form

q̇(t) = r(t)− y(t), u(t) = KIq(t) +KP (r(t)− y(t))

Which goals are achievable (by proper choice of KI and KP ), and which goals are
unachievable (regardless of the choice)?

6. A one-state plant, P is governed by equations

ẋ(t) = −4x(t) + d(t) + 3u(t), y(t) = 2x(t)

where x is the state of the plant, d is an external disturbance, and u is the control
variable. The plant output is y. A reference input r is available to the controller.

(a) Design a PI controller of the form

q̇(t) = r(t)− y(t), u(t) = KIq(t) +KP (r(t)− y(t))

such that the closed-loop eigenvalues are given by (ξ = 0.9, ωn = 10).

(b) In the closed-loop system, what is the steady-state gain from r → y?

(c) In the closed-loop system, what is the steady-state gain from d→ y?

(d) In the closed-loop system, what is the steady-state gain from d→ u?
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