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Be sure to check that all of your matrix manipulations have the correct dimensions, and
that the concatenations have compatible dimensions (horizontal concatenations must
have the same number of rows, vertical concatenation must have the same number of
columns).

6. Consider the interconnection below. The transfer functions of systems S1 and S2 are

G1(s) =
3

s+ 6
, G2(s) =

s+ 2

s+ 1

Determine the differential equation governing the relationship between u and y.

S1 S2
- - -u y
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1. A closed-loop feedback system is shown below. Signals are labeled and equations for
each component (controller, plant, sensor) are given.
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Keep the plant parameter a as a general value, but assume b1 = b2 = c = 1, for
simplicity. K1 and K2 are gains (constants). Keep these as variables. Specific values
will be designed in part (b) of the problem.

(a) For the closed-loop system above, fill in the 3× 4 matrix which relates (x, r, d, n)
to (ẋ, y, u). Your expressions should involve variables (K1, K2, a).

 ẋ(t)y(t)

u(t)

 =

 

x(t)

r(t)

d(t)

n(t)
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(b) Now take a = −1 so that the plant, by itself, is stable, and hence has a time-
constant of τP = 1. Suppose one goal of feedback control is to achieve closed-
loop stability, and make the closed-loop system respond faster, so that the
closed-loop time constant is less than τP . Specifically, work in ratios, express-
ing this design requirement that the closed-loop time-constant, τCL, should be a
fraction γ of the plant time constant, namely

Design Requirement #1 : τCL = γ · τP

where 0 < γ < 1 is a given design target. The other design requirement is

Design Requirement #2 : SSGr→y = 1

in words, the steady-state gain from r → y should equal 1. Task: As a function
of γ, find expressions for K1 and K2 which simultaneously achieve the two Design
Requirements.
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(c) For the closed-loop system, what is the instantaneous gain from r → u, as
a function of the design parameter γ? Is this gain increasing or decreasing as
γ decreases? Explain this relationship intuitively (ie., “if we require the system
to respond more quickly, with perfect steady-state behavior from r → y, the
instantaneous effect that r must have on u....”).

(d) For the closed-loop system, what is the steady-state gain from r → u, as a
function of the design parameter γ? How is this affected as γ decreases? Explain
this relationship intuitively (ie., “if we require the system to respond more quickly,
with perfect steady-state behavior from r → y, the steady-state effect that r must
have on u....”).

(e) For the closed-loop system, what is the steady-state gain from d → y, as a
function of the design parameter γ? How is this affected as γ decreases?
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2. Basic System Properties: The equations governing a 3-input, 3-output system are
ẋ(t)
y1(t)
y2(t)
y3(t)

 =


−2 1 −1 3

1 0 0 −1
2 4 −3 0
1 −1 −2 1




x(t)
u1(t)
u2(t)
u3(t)


(a) Is the system stable?

(b) What is the time-constant of the system?

(c) What is the steady-state gain from u3 to y2?

(d) What is the instantaneous-gain from u2 to y2?

(e) What is the frequency-response function G(ω) from u1 to y3?

(f) Suppose x(0) = 10 and

lim
t→∞

u1(t) = 2, lim
t→∞

u2(t) = 1, lim
t→∞

u3(t) = 1.

What is value of lim
t→∞

y3(t)
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3. (a) Define the complex number G = 19.5
j5+12

.

i. Find the value of |G|

ii. Find the value of ∠G

(b) Sketch the final output (in the axes) of the Matlab code. Carefully focus on
the period, amplitude and time-alignment of the input signal (dashed)
and response signal (solid).

w = 5; TF = 10*2*pi/w; x0 = -2;

uH = @(z) sin(w*z);

fH = @(t,x) -12*x + 19.5*uH(t);

[tSol, xSol] = ode45(fH,[0 TF],x0);

plot(tSol, uH(tSol),’--’, tSol, xSol); % input=dashed; solution=solid

xlim((2*pi/w)*[7 8]); % reset horz limits to exactly cover 1 period
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4. A closed-loop feedback system is shown below. Signals are labeled. Note that the one
marked summing junction has a − sign, as typical of our negative feedback convention.
Treat all unmarked summing junctions as +.

Fill in the 3× 4 matrix which relates (x, r, d, n) to (ẋ, y, u) as shown below

 ẋ(t)y(t)

u(t)

 =

 

x(t)

r(t)

d(t)

n(t)


(a) What is the time-constant of the closed-loop system?

(b) What is the steady-state gain from r → y?

(c) What is the steady-state gain from d→ y?

(d) What is the instantaneous gain from r → y?

(e) What is the instantaneous gain from d→ y?
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(f) The two axes below show a specific reference input r (solid) and disturbance input
d (dashed). These are the same in both axes. Assume n(t) ≡ 0 for all t. The
closed-loop system starts from x(0) = −0.2, and is forced by this reference and
disturbance input. Make careful sketches of y(t) and u(t) in the top and bot-
tom axes, respectively (note that they are individually marked with task “Sketch
Output y” and “Sketch Input u”).
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5. Consider the delay-differential equation

ẋ(t) = A1x(t) + A2x(t− T )

where A1, A2 and T are real-valued constants. T ≥ 0 is called the “delay.” Depending
on the values, there are 3 cases:

• The system is unstable for T = 0; or

• The system is stable for all T ≥ 0; or

• The system is stable for T = 0, but unstable for some positive value of T . In this
case, we are interested in the smallest T > 0 for which instability occurs, and the
frequency of the nondecaying oscillation that occurs at this critical value of delay.

Fill in the table below. In each row, please mark/check one of the first three columns
(from the three cases above). If you check the 3rd column, then include nu-
merical values in the 4th and 5th columns associated with the instability.
Show work below.

unstable
at T = 0

stable for
all T ≥ 0

stable at T =
0, but unstable at
some finite T > 0

frequency at
which instability
occurs

smallest T at
which instability
occurs

A1 = −1,
A2 = −3
A1 = −4,
A2 = −2
A1 = 1,
A2 = −3
A1 = −2,
A2 = 3
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6. Three first-order systems, Sys1, Sys2, Sys3, all stable, have the familar form

ẋ1(t) = a1x1(t) + b1u1(t)
y1(t) = c1x1(t) + d1u1(t)︸ ︷︷ ︸

Sys1

ẋ2(t) = a2x2(t) + b2u2(t)
y2(t) = c2x2(t) + d2u2(t)︸ ︷︷ ︸

Sys2

ẋ3(t) = a3x3(t) + b3u3(t)
y3(t) = c3x3(t) + d3u3(t)︸ ︷︷ ︸

Sys3

The Magnitude plot of the associated frequency-response functions G1(ω), G2(ω) and
G3(ω) are shown below (note, G1 is the frequency-response function of Sys1, etc).

The step-responses of the systems, labeled SR:A, SR:B and SR:C are shown below.
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Match each step-response with the corresponding Frequency-response magnitude plot
(eg., is SR:A the step response of Sys1, Sys2 or Sys3?)
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