Second Midterm Exam Solutions

Place all answers on the question sheet provided. The exam is open textbook and open notes/handouts/homework. You are allowed to use a calculator, but not a computer, tablet or smartphone. Write all answers clearly and in complete sentences. All answers should be supported by analysis or an argument. This exam has a total of 50 points.

First Name: \qquad

Last Name: \qquad

$1(\mathrm{a})$	$1(\mathrm{~b})$	$1(\mathrm{c})$	$1(\mathrm{~d})$	$2(\mathrm{a})$	$2(\mathrm{~b})$	$2(\mathrm{c})$	Total

Honor Code

I resolve
i) not to give or receive aid during this examination, and
ii) to take an active part in seeing that other students uphold this Honor Code.

Signature: \qquad

1. George is known to always be able to help people with their computer problems. His friends and work-colleagues request his help at times that follow a Poisson process with rate $1 / 24$ per hour, i.e. one per day, and each time he helps somebody he has to stop his own work for a uniform amount of time between $[1 / 2,2]$, i.e., between 30 min to two hours. The only times when George says no to a request is when he's helping somebody else.
We model George's day as an on-off renewal process where the on period refers to the time he spends helping somebody, and the off period when he's not helping anybody.
(a) [6 PTS] Compute the expected length of both the on and off periods.

Solution:

The on period has a Uniform $(1 / 2,2)$ distribution, and therefore

$$
E[\text { On period }]=\frac{2+1 / 2}{2}=\frac{5}{4},
$$

and since after completing a request, the next one to arrive will do so in an exponential amount of time with rate $1 / 24$, then

$$
E[\text { Off period }]=24 .
$$

(b) [$\left.7 \begin{array}{ll}7 & \mathrm{PTS}\end{array}\right]$ Compute the long-run proportion of time that George spends helping other people.
Solution:

$$
\frac{E[\text { On period }]}{E[\text { On period }]+E[\text { Off period }]}=\frac{5 / 4}{5 / 4+24}=\frac{5}{101}
$$

(c) [8 PTS $]$ Compute the expected number of times George says no to somebody asking for his help during an on period.
Solution:
The number of people who will ask George for help during a period of length t is a Poisson random variable $N(t)$ with mean $t / 24$, and so if we let U be a Uniform[1/2,2] random variable, representing the amount of time George is busy helping somebody else, then

$$
\begin{aligned}
E[\text { Number of times he says no }] & =E[N(U)]=E[E[N(U) \mid U]]=E[U / 24]=E[U] / 24 \\
& =\frac{5}{4(24)}=\frac{5}{96}
\end{aligned}
$$

(d) [8 PTS] Compute the variance of the number of times George says no to somebody asking for his help during an on period.
Solution:
We are interested in the variance of $N(U)$, where $N(t)$ and U are the same from part (c). Therefore, using the formula of the total variance,

$$
\begin{aligned}
\operatorname{var}(N(U)) & =E[\operatorname{var}(N(U) \mid U)]+\operatorname{var}(E[N(U) \mid U])=E[U / 24]+\operatorname{var}(U / 24) \\
& =\frac{E[U]}{24}+\frac{\operatorname{var}(U)}{(24)^{2}}
\end{aligned}
$$

We already computed $E[U]=5 / 4$, and the variance of a $\operatorname{Uniform}(1 / 2,2)$ is

$$
\operatorname{var}(U)=\frac{(2-1 / 2)^{2}}{12}=\frac{(3 / 2)^{2}}{12}=\frac{3}{16}
$$

Hence,

$$
\operatorname{var}(N(U))=\frac{5}{4(24)}+\frac{3}{16(24)^{2}}=\frac{1}{24}\left(\frac{5}{4}+\frac{1}{16(8)}\right)=\frac{161}{16(8)(24)}=\frac{161}{3072}
$$

2. Joyce receives Facebook updates from her three closest friends: Amy, Brenda and Cindy. Each of her friends has different Facebook habits, with Amy sending her messages at a rate of $1 / 7$ per day, Brenda at a rate of $1 / 2$ per day, and Cindy at a rate of 1 per day. We assume that the number of messages Joyce receives from her friends are independent Poisson processes.
(a) [5 PTS] Let $N(t)$ denote the number of messages Joyce receives from her three friends during the period $[0, t]$. Write down the PMF of $N(t)$, i.e., $P(N(t)=n)$ for $n=$ $0,1,2, \ldots$.
Solution:
Since the superposition of independent Poisson processes is again a Poisson process whose rate is the sum of the rates, then $N(t)$ is a Poisson process with rate

$$
\frac{1}{7}+\frac{1}{2}+1=\frac{2+7+14}{14}=\frac{23}{14}
$$

or equivalently,

$$
P(N(t)=n)=\frac{e^{-23 t / 14}(23 t / 14)^{n}}{n!}, \ldots n=0,1,2, \ldots
$$

(b) [8 PTS $]$ Compute the probability that the next Facebook update Joyce receives from her three friends comes from Cindy.
Solution:
Since this is the same as the probability that the minimum of three independent exponentials, χ_{A}, χ_{B} and χ_{C}, having rates $1 / 7,1 / 2$ and 1 , respectively, is equal to ξ_{C}, then
$P($ Next update is from Cindy $)=P\left(\chi_{C}=\min \left\{\chi_{A}, \chi_{B}, \chi_{C}\right)=\frac{1}{1 / 7+1 / 2+1}=\frac{14}{23}\right.$
(c) [8 PTS] Given that yesterday Joyce received 5 Facebook updates from her group of three friends (during a 24 hour period), compute the probability that none of them are from Cindy.

Solution:

Let $N_{A}(t), N_{B}(t)$, and $N_{C}(t)$ denote the number of Facebook updates from Amy, Brenda and Cindy, respectively, that Joyce received during the period $[0, t]$. Then, we need to compute

$$
\begin{aligned}
P\left(N_{C}(t)=0 \mid N(t)=5\right) & =\frac{P\left(N_{C}(t)=0, N(t)=5\right)}{P(N(t)=5)} \\
& =\frac{P\left(N_{C}(t)=0, N_{A}(t)+N_{B}(t)+N_{C}(t)=5\right)}{P(N(t)=5)} \\
& =\frac{P\left(N_{C}(t)=0\right) P\left(N_{A}(t)+N_{B}(t)=5\right)}{P(N(t)=5)} \quad \text { (by independence) } \\
& =\frac{e^{-1} \cdot e^{-(1 / 7+1 / 2)}(1 / 7+1 / 2)^{5} / 5!}{e^{-(23 / 14)}(23 / 14)^{5} / 5!} \\
& =\frac{(1 / 7+1 / 2)^{5}}{(23 / 14)^{5}}=\left(\frac{9}{23}\right)^{5}
\end{aligned}
$$

