
2 count = 0
3 for x in self.X_test_ridge:
4

5 prediction = np.matmul(self.w_ridge,x)
6 ###ADD THE COMPUTED MEAN BACK TO THE PREDICTED VECTOR###
7 prediction = self.ss_y.inverse_transform(prediction)
8 self.plot_image(prediction,count)
9 count += 1

10 count = 0
11

12

13 for x in self.x_test:
14

15 x = x.astype("uint8")
16

17 x = cv2.resize(x,(100,100))
18

19 cv2.imwrite(’og_face_’+str(count)+’.png’,x)
20

21

22 count+=1
23

24 for x in self.y_test:
25 x = x.astype("uint8")
26

27 x = cv2.resize(x,(100,100))
28

29 cv2.imwrite(’gt_face_’+str(count)+’.png’,x)
30

31

32 count+=1

4 Bias-Variance for Ridge Regression (24 points)

Consider the scalar data-generation model:

Y = xw∗ + Z

where x denotes the scalar input feature, Y denotes the scalar noisy measurement, Z ∼ N (0, 1)
is standard unit-variance zero-mean Gaussian noise, and w∗ denotes the true generating parameter
that we would like to estimate.

We are given a set of n training samples {xi, yi}ni=1 that are generated by the above model with
i.i.d. Zi and distinct xi. Our goal is to fit a linear model and get an estimate ŵ for the true parameter
w∗. For all parts, assume that xi’s are given and fixed (not random).

For a given training set {xi, yi}ni=1, the ridge-regression estimate for w∗ is defined by

ŵλ = arg min
w∈R

λw2 +
n∑
i=1

(yi − xiw)2 with λ ≥ 0.

For the rest of the problem, assume that this has been solved and written in the form:

ŵλ =
Sxy
s2x + λ

(2)
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(a) (8 pts) Compute the squared-bias of the ridge estimate ŵλ defined as follows

Bias2(ŵλ) = (E[ŵλ]− w∗)2. (3)

It is fine if your answer depends on w∗ or sx, but it should not depend directly or indirectly on
the realizations of the random Z noise. (So, no Sxy allowed.)

Hint: First compute the expectation of the estimate ŵλ over the noises Z in the observation.
Solution: To compute the expectation, we note that 1) the ridge-estimate is random because
the observation Y is random, and 2) that E[Yi] = E[xiw

∗+Zi] = xiw
∗. Using these two facts

and the linearity of expectation, we have

E[ŵλ] = E

[ ∑n
i=1 xiYi∑n

i=1 x
2
i + λ

]
=

1∑n
i=1 x

2
i + λ

 n∑
i=1

E[xiYi]


=

1∑n
i=1 x

2
i + λ

 n∑
i=1

xiE[Yi]


=

1∑n
i=1 x

2
i + λ

 n∑
i=1

x2iw
∗


= w∗

( ∑n
i=1 x

2
i∑n

i=1 x
2
i + λ

)
.

We now compute the squared-bias as follows:

(E[ŵλ − w∗])2 =

w∗( ∑n
i=1 x

2
i∑n

i=1 x
2
i + λ

)
− w∗

2

= (w∗)2
λ2

(
∑n

i=1 x
2
i + λ)2

= (w∗)2
λ2

(s2x + λ)2
.
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(b) (8 pts) Compute the variance of the estimate ŵλ which is defined as

Var(ŵλ) = E[(ŵλ − E[ŵλ])
2]. (4)

Hint: It might be useful to write ŵλ = E[ŵλ] +R for some random variable R.

Solution: We have

ŵλ =

∑n
i=1 xiYi

λ+
∑n

i=1 x
2
i

=

∑n
i=1 x

2
iw
∗ + xiZi

λ+
∑n

i=1 x
2
i

= E[ŵλ] +
1

λ+
∑n

i=1 x
2
i

n∑
i=1

xiZi︸ ︷︷ ︸
R

,

where R denotes the random variable defined in the hint.

Thus, we have

E(ŵλ − E[ŵλ])
2 =

1

(λ+
∑n

i=1 x
2
i )

2
E(

n∑
i=1

xiZi)
2

=
1

(λ+
∑n

i=1 x
2
i )

2

 n∑
i=1

x2iE(Z2
i ) +

∑
i 6=j

xixjE[ZiZj]


=

∑n
i=1 x

2
i

(λ+
∑n

i=1 x
2
i )

2

=
s2x

(λ+ s2x)
2
.

since E(Z2
i ) = 1 and E(ZiZj) = 0 for i 6= j as Zi is independent of Zj .
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(c) (8 pts) Describe how the squared-bias and variance of the estimate ŵλ change as we
change the value of λ. What happens as λ → 0? λ → ∞? Is the bias increasing or
decreasing? Is the variance increasing or decreasing? In what sense is there a bias/vari-
ance tradeoff?

Solution: We have

Bias2(ŵλ) = (w∗)2
λ2

(
∑n

i=1 x
2
i + λ)2

= (w∗)2
1

(s2x/λ+ 1)2

Var(ŵλ) =

∑n
i=1 x

2
i

(λ+
∑n

i=1 x
2
i )

2
=

s2x
(λ+ s2x)

2

and thus clearly squared-bias increases with increase in λ and takes value 0 at 0. In fact,
λ = 0 corresponds to the OLS case and you may recall that OLS for linear models is unbiased.
(Students are not expected to make this observation in the exam, but it is stated here as a
take away message.) Furthermore, for λ → ∞, we have that bias-squared→ (w∗)2. We can
directly observe this fact, since λ → ∞ implies that the ridge estimate would be 0 and hence
the bias would be w∗ and consequently the bias-squared would be (w∗)2.

For the variance, we see that increasing λ reduces variance. This is intuitively correct too,
because larger penalty forces the weight to shrink towards zero thereby reducing its scale and
hence the variance too!

Thus, we see that a larger penalty in ridge-regression increases the squared-bias for the estimate
and reduces the variance, and thus we observe a trade-off.

5 Hospital (25 points)

You work at hospital A. Your hospital has collected patient data to build a model to predict who is
likely to get sepsis (a bad outcome). Specifically, the data set contains the feature matrix X ∈ Rn×d,
and associated real number labels y ∈ Rn, where n is the number of patients you are learning from
and d is the number of features describing each patient. You plan to fit a linear regression model
ŷ = w>x that will enable you to predict a label for future, unseen patients (using their feature
vectors).

However, your hospital has only started collecting data a short time ago. Consequently the model
you fit is not likely to be particularly accurate. Hospital B has exactly the same set up as your
hospital (i.e., their patients are drawn from the same distribution as yours and they have the same
measurement tools). For privacy reasons, Hospital B will not share their data. However, they tell
you that they have trained a linear model on their own sepsis-relevant data: (XB and yB) and are
willing to share their learned model ŷ = ŵ>Bx with you. In particular, Hospital B shares their
entire Gaussian posterior distribution on w with you: N (ŵB,Ψ).

(a) (10 pts) Assume that we use the posterior from Hospital B as our own prior distribution for
w ∼ N (ŵB,Ψ). Suppose that our Hospital A model is given by y = Xw + ε, where the
noise, ε, has an assumed distribution ε ∼ N (0, I). Derive the MAP estimate ŵ for w using
Hospital A’s data X,y and the prior information from Hospital B.
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HINT: Recall that traditional ridge regression could be derived from a MAP perspective, where
the parameter w has a zero mean Gaussian prior distribution with a scaled identity covariance.
How could you use reparameterization (i.e. change of variables) for the problem here?

Solution:
The overall point of the Hospital problem was to highlight the equivalence between a prior
distribution on parameter(s) and ”pseudo” data. Stating a prior can in general be reformulated
as pretending to have seen some made up data, often referred to as pseudo-data. This point was
highlighted in homework. In general, the tighter the prior distribution (e.g. the less variance),
the more sure we are that it is ”correct”. Thus it also corresponds to having seen more ”pseudo”
data.

In part (a) the question is really just asking you to crank through the MAP estimate. But the
pedagogical insight was to appreciate that in the hospital setting, the ”pseudo” data actually
corresponded to real data and helped us get around a privacy problem! One could derive it
from ”scratch” as done in lecture, with the specific prior given in the question, as follows (but
there is a much easier solution we go over next):

From first principles solution:

Let D be the dataset, i.e. X and y. According to the Bayes’ Rule and ignoring the terms not
related to w, we have:

log p(w|D) ∝ log p(D|w) + log p(w)

∝ −(Xw − y)>(Xw − y)− (w −wB)>Ψ−1B (w −wB)

∝ (−w>X>Xw + 2y>Xw)− (w>Ψ−1B w − 2wB
>Ψ−1B w)

∝ −w>(X>X + Ψ−1B )w + 2(y>X + wB
>Ψ−1B )w

(5)

Setting the derivative of log p(w|D) to zero and solve the equation, we get:

ŵ = (X>X + Ψ−1B )−1(X>y + Ψ−1B wB)

However, an easier way to solve this question was to simply do a change of variables on w
such that its prior became zero-mean and we could just read off the solution derived in lecture
for MAP with arbitrary prior variance. In particular let v = w−wb (i.e. w = v + w =), then
we have

log p(w|D) ∝ log p(D|w) + log p(w)

= logN(y; X(v + wB), I) + logN(v; 0,Ψ)
(6)

From which we read off that ŵ = wB + (XTX + Ψ−1)−1XT (y − Xwb), appealing to the
formula we derived in class and appearing in the notes.

A third solution would have been to use the change of variables

w = Ψ1/2v + wB

to reduce to standard ridge with λ = 1 and read the solution off directly as done in lecture–see
the lecture notes only without the wB offset term.
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(b) (15 pts) Now, for simplicity, consider d = 1 so that the w is a scalar parameter. Suppose that
instead of giving you their posterior distribution, Hospital B only gave you their mean ŵB.
How can you use this information to help fit your model? Describe in detail how you should
use your own hospital’s patient data and combine it with the mean ŵB from Hospital B
in a procedure to find your own ŵ for predicting sepsis in Hospital A.
Hint 1: You might want to consider introducing an appropriate hyperparameter and doing
what you usually do with hyperparameters.

Hint 2: What does the λ hyperparameter in ridge-regression correspond to from a probabilistic
perspective?

Solution:
This problem was asking students to remember that an unknown variance term in a prior cor-
responds to a hyperparameter. After all λ in traditional ridge regression corresponded to the
reciprocal of the prior variance. This suggests that we should introduce a hyperparameter ψ
into the problem for the unknown variance. Once we have done this, we can do what we always
do with hyperparameters: use cross-validation to pick an appropriate value for them. Putting
these ideas together, we get the solution:

(a) Divide the data X and y from Hospital A into k folds. (For example, we could even have
k = n here.)

(b) For different potential values of ψ do the following:

i. Repeat over the k folds:
A. Let the training data Xtrain be all of X except the j-th fold. Similarly, let the

training data ytrain be all of y except the j-th fold.
B. Use the modified ridge regression of Part (a) using the current potential value for

the hyperparameter ψ to fit a candidate ŵψ using Xtrain and ytrain.
C. Evaluate the validation error on the validation data representing the j-th fold of

X and y.
ii. Average together the validation error (squared errors) for the different fold to get an

average validation error estimate for this particular value for the hyperparameter ψ.

(c) Choose the hyperparameter value ψ with the lowest average validation error.

(d) Retrain the model using the chosen value for ψ on the entire training data X and y to get
our final ŵ for hospital A.

We also would accept other ways of using a hyperparameter. For example, realizing that
the effect of the hyperparameter in the scalar case is simply to “shrink” the OLS estimate
towards ŵB, it would also be reasonable to directly define the amount of interpolation between
the two as the hyperparameter. The important thing is that the validation data for evaluating
hyperparameters be chosen in a way that is not cross-contaminated with data being used to set
the parameters themselves. So, it is still vital that the OLS estimate be done with different data
and cross-validation be used.
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Given that the context here is data poor, it does make sense to use k-fold cross-validation
instead of simply splitting the data into a training and validation set once. However on the
exam, no points were deducted for just using a simple validation approach.

6 Ridge regression vs. PCA (24 points)

Assume we are given n training data points (xi, yi). We collect the target values into y ∈ Rn, and
the inputs into the matrix X ∈ Rn×d where the rows are the d−dimensional feature vectors x>i
corresponding to each training point. Furthermore, assume that 1

n

∑n
i=1 xi = 0, n > d and X has

rank d.

In this problem we want to compare two procedures: The first is ridge regression with hyperparam-
eter λ, while the second is applying ordinary least squares after using PCA to reduce the feature
dimension from d to k (we give this latter approach the short-hand name k-PCA-OLS where k is
the hyperparameter).

Notation: The singular value decomposition of X reads X = UΣV> where U ∈ Rn×n, Σ ∈
Rn×d and V ∈ Rd×d. We denote by ui the n-dimensional column vectors of U and by vi the
d−dimensional column vectors of V. Furthermore the diagonal entries σi = Σi,i of Σ satisfy
σ1 ≥ σ2 ≥ · · · ≥ σd > 0. For notational convenience, assume that σi = 0 for i > d.

(a) (6 pts) It turns out that the ridge regression optimizer (with λ > 0) in the V-transformed
coordinates

ŵridge = arg min
w
‖XVw − y‖22 + λ‖w‖22

has the following expression:

ŵridge = diag(
σi

λ+ σ2
i

)U>y. (7)

Use ŷtest = x>testVŵridge to denote the resulting prediction for a hypothetical xtest. Using (7)
and the appropriate scalar {βi}, this can be written as:

ŷtest = x>test

d∑
i=1

viβiu
>
i y. (8)

What are the βi ∈ R for this to correspond to (7) from ridge regression?

Solution:
The resulting prediction for ridge reads

ŷridge = x>V diag
( σi
λ+ σ2

i

)
U>y

= x>
d∑
i=1

σi
λ+ σ2

i

viu
>
i y

Therefore we have βi = σi
λ+σ2

i
for i = 1, . . . , d.

HW6, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 25



(b) (12 pts) Suppose that we do k-PCA-OLS — i.e. ordinary least squares on the reduced k-
dimensional feature space obtained by projecting the raw feature vectors onto the k < d prin-
cipal components of the covariance matrix X>X. Use ŷtest to denote the resulting prediction
for a hypothetical xtest,

It turns out that the learned k-PCA-OLS predictor can be written as:

ŷtest = x>test

d∑
i=1

viβiu
>
i y. (9)

Give the βi ∈ R coefficients for k-PCA-OLS. Show work.
Hint 1: some of these βi will be zero. Also, if you want to use the compact form of the SVD,
feel free to do so if that speeds up your derivation.

Hint 2: some inspiration may be possible by looking at the next part for an implicit clue as to
what the answer might be.

Solution: The OLS on the k-PCA-reduced features reads

min
w
‖XVkw − y‖22

where the columns of Vk consist of the first k eigenvectors of X.

In the following we use the compact form SVD, that is note that one can write

X = UΣV

= UdΣdV

where Σd = diag(σi) for i = 1, . . . , d and Ud are the first d columns of U. In general we use
the notation Σk = diag(σi) for i = 1, . . . , k.

Apply OLS on the new matrix XVk to obtain

ŵPCA = [(XVk)
>(XVk)]

−1(XVk)
>y

= [V>k VΣ2
dV
>Vk]

−1V>k X>y

= Σ−1k U>k y = Σ̃
−1
k U>y

where Σ̃k =
(
Σk 0

)
The resulting prediction for PCA reads (note that you need to project it first!)

ŷPCA = x>VkŵPCA

= x>VkΣ
−1
k U>k y

= x>
k∑
i=1

1

σi
viu

>
i y

and hence βi = 1
σi

if i ≤ k and βi = 0 for i = k + 1, . . . , d.
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(c) (6 pts) For the following part, d = 5. The following β := (β1, . . . , β5) (written out to two
significant figures) are the results of OLS (i.e. what we would get from ridge regression in the
limit λ → 0), λ-ridge-regression, and k-PCA-OLS for some X,y (identical for each method)
and λ = 1, k = 3. Write down which procedure was used for each of the three sub-parts
below.
We hope this helps you intuitively see the connection between these three methods.

Hint: It is not necessary to find the singular values of X explicitly, or to do any numerical
computations at all.

(i) β = (0.01, 0.1, 0.5, 0.1, 0.01)

(ii) β = (0.01, 0.1, 1, 0, 0)

(iii) β = (0.01, 0.1, 1, 10, 100)

Solution: Ridge, 3-PCA-OLS, OLS.

Reasoning: The prediction for OLS is the same as for PCA with k = d.

ŷOLS = x>
d∑
i=1

1

σi
viu

>
i y

Putting all pieces together, we can thus see that PCA does “hard shrinkage” or “hard cutoff”
(i.e. sets to zero) of the last k + 1, . . . , d coefficients βi, whereas ridge regression does “soft
shrinkage” (i.e. shrinks towards zero) of the coefficients.

7 Kernel PCA (24 points)

In lectures, discussion, and homework, we learned how to use PCA to do dimensionality reduction
by projecting the data to a subspace that captures most of the variability. This works well for data
that is roughly Gaussian shaped, but many real-world high dimensional datasets have underlying
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low-dimensional structure that is not well captured by linear subspaces. However, when we lift
the raw data into a higher-dimensional feature space by means of a nonlinear transformation, the
underlying low-dimensional structure once again can manifest as an approximate subspace. Linear
dimensionality reduction can then proceed. As we have seen in class so far, kernels are an alter-
nate way to deal with these kinds of nonlinear patterns without having to explicitly deal with the
augmented feature space. This problem asks you to discover how to apply the “kernel trick” to
PCA.

Let X ∈ Rn×` be the data matrix, where n is the number of samples and ` is the dimension of the
raw data. Namely, the data matrix contains the data points xj ∈ R` as rows

X =


x>1
x>2
...

x>n

 ∈ Rn×`. (10)

(a) (5 pts) Compute XX> in terms of the singular value decomposition X = UΣV> where
U ∈ Rn×n,Σ ∈ Rn×` and V ∈ R`×`. Notice that XX> is the matrix of pairwise Euclidean
inner products for the data points. How would you get U if you only had access to XX>?

Solution: By plugging in the compact SVD decomposition X = UΣV> and using U>U = I
we get

X>X = VΣU>UΣV> = VΣ2V>.

Similarly with V>V = I we get

XX> = UΣV>VΣU> = UΣ2U>.

Notice from the last line that U are the eigenvectors of XX> with eigenvalues σ2
1, σ

2
2, . . . , σ

2
`

where σ1, σ2, . . . , σd are the singular values of X and can therefore be computed by performing
an eigendecomposition of XX>.
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(b) (7 pts) Given a new test point xtest ∈ R`, one central use of PCA is to compute the projection
of xtest onto the subspace spanned by the k top singular vectors v1,v2, . . . ,vk.

Express the scalar projection zj = v>j xtest onto the j-th principal component as a function
of the inner products

Xxtest =

〈x1,xtest〉
...

〈xn,xtest〉

 . (11)

Assume that all diagonal entries of Σ are nonzero and non-increasing, that is σ1 ≥ σ2 ≥ · · · >
0.

Hint: Express V> in terms of the singular values Σ, the left singular vectors U and the data
matrix X. If you want to use the compact form of the SVD, feel free to do so.

Solution: By multiplying the compact SVD X = UΣV> on both sides with U>, we get
U>X = ΣV> and multiplying both sides of the new equation with Σ−1, we obtain

V> = Σ−1U>X.

Therefore we get

zj = v>j xtest =
1

σj
u>j Xxtest

.
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(c) (12 pts) How would you define kernelized PCA for a general kernel function k(xi,xj) (to
replace the Euclidean inner product 〈xi,xj〉)? For example, the RBF kernel k(xi,xj) =

exp
(
−‖xi−xj‖2

δ2

)
.

Describe this in terms of a procedure which takes as inputs the training data points
x1,x2, . . . ,xn ∈ R` and the new test point xtest ∈ R`, and outputs the analog of the
previous part’s zj coordinate in the kernelized PCA setting. You should include how
to compute U from the data, as well as how to compute the analog of Xxtest from the
previous part.
Invoking the SVD or computing eigenvalues/eigenvectors is fine in your procedure, as long as it
is clear what matrix is having its SVD or eigenvalues/eigenvectors computed. The kernel k(·, ·)
can be used as a black-box function in your procedure as long as it is clear what arguments it
is being given.

Solution: For kernelizing PCA, we replace inner products 〈xi,xj〉with k(xi,xj) and 〈xi,xtest〉
with k(xi,xtest), the procedure is then:

(a) Obtain the vectors uj as eigenvectors from the eigendecomposition of the kernelized
counterpart of the Gram matrix: K ∈ Rn×n with Kij = k(xi,xj). The eigenvalues
should be sorted in decreasing order. They are all non-negative real numbers because of
the properties of kernels — the K matrix must be positive semi-definite.

(b) Kernelize the inner products zj = 1
σj

u>j Xxtest from the previous part by using:

zj =
1

σj
u>j


k(x1,xtest)
k(x2,xtest)

...
k(xn,xtest)

 , (12)

where the σj are the square roots of the eigenvalues for the martix K above generated
by using the kernel on all pairs of training points. Because these are non-negative real
numbers, the square root is well defined.

8 Multiple Choice Questions (14 points)

For these questions, select all the answers which are correct. You will get full credit for selecting
all the right answers. On some questions, real-valued partial credit will be assigned. You will be
graded on your best seven of nine, so feel free to skip up to two of them.

(a) Let X ∈ Rn×d with n ≥ d. Suppose X = UΣV> is the singular value decomposition of X
where σi = Σi,i are the diagonal entries of Σ and satisfy σ1 ≥ σ2 ≥ · · · ≥ σd while ui and vi
are the ith columns of U and V respectively. Which of the following is the rank k approx-
imation to X that is best in the Froebenius norm. That is, which low rank approximation,
Xk, for X yields the lowest value for ||X−Xk||2F ?
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©
∑k

i=1 σiuiv
>
n−i

©
∑k

i=1 σiuiv
>
i ©

∑d
i=d−k+1 σiuiv

>
i ©

∑k
i=1 σiun−iv

>
i

Solution: The solution comes from the Eckhart-Young theorem which states we should use
the singular vector expansion from 1 to k,

∑k
i=1 σiuiv

>
i

(b) Consider a simple dataset of points (xi, yi) ∈ R2, each associated with a label bi which is −1
or +1. The dataset was generated by sampling data points with label −1 from a disk of radius
1.0 (shown as filled circles in the figure) and data points with label +1 from a ring with inner
radius 0.8 and outer radius 2.0 (shown as crosses in the figure). Which set of polynomial
features would be best for performing linear regression, assuming at least as much data
as shown in the figure?

© 1, xi

© 1, xi, yi

© 1, xi, yi, x
2
i , xiyi, y

2
i

© 1, xi, yi, x
2
i , xiyi, y

2
i , x

3
i , y

3
i , x

2
i yi, xiy

2
i

Solution: Because the decision boundary was created by circles, and because there was
enough data to justify modelling circles, we should use precisely order two polynomial fea-
tures: 1, x2i , xiyi, y

2
i . (Aside: If we had not specified that the points were created by circles, it

could have been reasonable also add in possibly up to cubic polynomials, but this was consid-
ered incorrect here. Even if we had specified that the boundaries were created by circles, but
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had given only say two data points, then even a second order polynomial would not have made
sense.)

(c) Which of the following is a valid kernel function for vectors of the same length, x and y?

© k(x,y) = x>y

© k(x,y) = e−
1
2
||x−y||22

© k(x,y) = (1 + x>y)p for some degree p

© k(x,y) = k1(x,y) − k2(x,y) for valid
kernels k1 and k2.

Solution: All except k(x,y) = k1(x, y) − k2(x, y) for valid kernels k1 and k2. This is not a
valid kernel because valid kernel functions are not in general closed under subtraction, rather
they are closed only under positive, linear combinations.

(d) During training of your model, both independent variables in the matrix X ∈ Rn×d and de-
pendent target variables y ∈ Rn are corrupted by noise. At test time, the data points you are
computing predictions for, xtest, are noiseless. Which method(s) should you use to estimate
the value of ŵ from the training data in order to make the most accurate predictions
ytest from the noiseless test input data, Xtest? Assume that you make predictions using
ytest = Xtestŵ.

© OLS
© Ridge regression

© Weighted Least Squares

© TLS

Solution: TLS since the test data has no noise while the training data does. This means that
we are looking for the true relationship (as opposed to the best predictor for the training data)
and total least squares is the one that does this.

Because TLS was shown to be equivalent to ridge-regression with a negative regularizer, points
were not taken off for marking that as well.

(e) Assume you have n input data points, each with d high quality features (X ∈ Rn×d) and
associated labels (y ∈ Rn). Suppose that d � n and that you want to learn a linear predictor.
Which of these approaches would help you to avoid overfitting?

© Preprocess X using k � n random pro-
jections

© Preprocess X using PCA with k � n

components.
© Preprocess X using PCA with n compo-

nents.

© Add polynomial features

© Use a kernel approach

© Add a ridge penalty to OLS

© Do weighted least squares
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Solution: The goal here is simple dimensionality reduction for overfitting avoidance. As the
earlier problem in the exam showed, ridge regression can be viewed as a softer form of k-PCA-
OLS where the different dimensions are downweighted softly rather than as a strict truncation.
So both PCA and ridge are clearly valid approaches to reduce overfitting.

However, because the problem said that these are high-quality features, what you know about
random projection also applies and so they too can be useful for dimensionality reduction.

The other answers are mostly wrong. If you use n components of PCA, there are still too many
parameters relative to the data points. And so some overfitting will still occur.

Adding polynomial features makes the overfitting issue worse and not better, while weighing
samples doesn’t help us in any way.

We did not penalize for also marking kernel approaches since you know from lecture that
the right kernel can also regularize because the kernel approach serves the same purpose as
choosing features and priors together.

(f) Which methods could yield a transformation to go from the two-dimensional data on the
left to the two-dimensional data on the right?

© Random projections
© PCA

© Use of a kernel

© Adding polynomial features

Solution:
The plot here was literally obtained by doing RBF kernel-PCA on the data and choosing the
two dominant components. PCA is clearly being used, but also something that allows us to
get nonlinear relationships. Either the right kernel or polynomial features would suffice since
circles are involved.

Random projections would not help here since they are linear.
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(g) Your friend is training a machine learning model to predict disease severity based on k different
health indicators. She generates the following plot, where the value of k is on the x axis.

Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance

Solution: As k increases, the number of features in the ML model increases.

Full credit was given to anyone who responded Training Error, Bias, Validation Error or
Training Error, Bias.

It is most important to recognize that training error and bias decrease with the number of
features in the ML model. The reason that validation error is a correct answer is because it
may be the case that the behavior changes after k = 13. Given this graph, it is not possible to
know for sure.

(h) Your friend is training a machine learning model to predict disease severity based on k different
health indicators. She generates the following plot, where the value of k is on the x axis.
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Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance

Solution: As k increases, the number of features in the ML model increases.

Full credit was given to anyone who responded Variance, Validation Error or Variance.

It is most important to recognize that variance increases with the number of features in the ML
model. The reason that validation error is a correct answer is because it may be the case that
the behavior changes before k = 4. Given this graph, it is not possible to know for sure.

(i) Your friend is training a machine learning model to predict disease severity based on k different
health indicators. She generates the following plot, where the value of k is on the x axis.

Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance

Solution: As k increases, the number of features in the ML model increases.

Full credit was given to anyone who responded Validation Error.

9 Your Own Question
Write your own question, and provide a thorough solution.

Writing your own problems is a very important way to really learn the material. The famous
“Bloom’s Taxonomy” that lists the levels of learning is: Remember, Understand, Apply, Analyze,
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