
Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for
the following values of k (the dimensions you reduce to):
k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 650}.

(e) Try running the learned model on 4 of the images in the test set and report the results.
Give both the binarized input, the true grayscale, and the output of your model. You may
use the code from previous part to visualize the images.

Mooney PredictedGround Truth

Figure 2: Example results with the input on the left and output on the right

4 Bias-Variance for Ridge Regression (24 points)

Consider the scalar data-generation model:

Y = xw∗ + Z

where x denotes the scalar input feature, Y denotes the scalar noisy measurement, Z ∼ N (0, 1)
is standard unit-variance zero-mean Gaussian noise, and w∗ denotes the true generating parameter
that we would like to estimate.

We are given a set of n training samples {xi, yi}ni=1 that are generated by the above model with
i.i.d. Zi and distinct xi. Our goal is to fit a linear model and get an estimate ŵ for the true parameter
w∗. For all parts, assume that xi’s are given and fixed (not random).

For a given training set {xi, yi}ni=1, the ridge-regression estimate for w∗ is defined by

ŵλ = arg min
w∈R

λw2 +
n∑
i=1

(yi − xiw)2 with λ ≥ 0.

For the rest of the problem, assume that this has been solved and written in the form:

ŵλ =
Sxy
s2x + λ

(2)

where Sxy =
∑n

i=1 xiYi and s2x =
∑n

i=1 x
2
i .

(This is given, no need to rederive it).
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(a) (8 pts) Compute the squared-bias of the ridge estimate ŵλ defined as follows

Bias2(ŵλ) = (E[ŵλ]− w∗)2. (3)

It is fine if your answer depends on w∗ or sx, but it should not depend directly or indirectly on
the realizations of the random Z noise. (So, no Sxy allowed.)

Hint: First compute the expectation of the estimate ŵλ over the noises Z in the observation.
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(b) (8 pts) Compute the variance of the estimate ŵλ which is defined as

Var(ŵλ) = E[(ŵλ − E[ŵλ])
2]. (4)

Hint: It might be useful to write ŵλ = E[ŵλ] +R for some random variable R.

(c) (8 pts) Describe how the squared-bias and variance of the estimate ŵλ change as we
change the value of λ? What happens as λ → 0? λ → ∞? Is the bias increasing or
decreasing? Is the variance increasing or decreasing? In what sense is there a bias/vari-
ance tradeoff?

5 Hospital (25 points)

You work at hospital A. Your hospital has collected patient data to build a model to predict who is
likely to get sepsis (a bad outcome). Specifically, the data set contains the feature matrix X ∈ Rn×d,
and associated real number labels y ∈ Rn, where n is the number of patients you are learning from
and d is the number of features describing each patient. You plan to fit a linear regression model
ŷ = w>x that will enable you to predict a label for future, unseen patients (using their feature
vectors).

However, your hospital has only started collecting data a short time ago. Consequently the model
you fit is not likely to be particularly accurate. Hospital B has exactly the same set up as your
hospital (i.e., their patients are drawn from the same distribution as yours and they have the same
measurement tools). For privacy reasons, Hospital B will not share their data. However, they tell
you that they have trained a linear model on their own sepsis-relevant data: (XB and yB) and are
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willing to share their learned model ŷ = ŵ>Bx with you. In particular, Hospital B shares their
entire Gaussian posterior distribution on w with you: N (ŵB,Ψ).

(a) (10 pts) Assume that we use the posterior from Hospital B as our own prior distribution for
w ∼ N (ŵB,Ψ). Suppose that our Hospital A model is given by y = Xw + ε, where the
noise, ε, has an assumed distribution ε ∼ N (0, I). Derive the MAP estimate ŵ for w using
Hospital A’s data X,y and the prior information from Hospital B.
HINT: Recall that traditional ridge regression could be derived from a MAP perspective, where
the parameter w has a zero mean Gaussian prior distribution with a scaled identity covariance.
How could you use reparameterization (i.e. change of variables) for the problem here?
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(b) (15 pts) Now, for simplicity, consider d = 1 so that the w is a scalar parameter. Suppose that
instead of giving you their posterior distribution, Hospital B only gave you their mean ŵB.
How can you use this information to help fit your model? Describe in detail how you should
use your own hospital’s patient data and combine it with the mean ŵB from Hospital B
in a procedure to find your own ŵ for predicting sepsis in Hospital A.
Hint 1: You might want to consider introducing an appropriate hyperparameter and doing
what you usually do with hyperparameters.

Hint 2: What does the λ hyperparameter in ridge-regression correspond to from a probabilistic
perspective?

6 Ridge regression vs. PCA (24 points)

Assume we are given n training data points (xi, yi). We collect the target values into y ∈ Rn, and
the inputs into the matrix X ∈ Rn×d where the rows are the d−dimensional feature vectors x>i
corresponding to each training point. Furthermore, assume that 1

n

∑n
i=1 xi = 0, n > d and X has

rank d.

In this problem we want to compare two procedures: The first is ridge regression with hyperparam-
eter λ, while the second is applying ordinary least squares after using PCA to reduce the feature
dimension from d to k (we give this latter approach the short-hand name k-PCA-OLS where k is
the hyperparameter).

Notation: The singular value decomposition of X reads X = UΣV> where U ∈ Rn×n, Σ ∈
Rn×d and V ∈ Rd×d. We denote by ui the n-dimensional column vectors of U and by vi the
d−dimensional column vectors of V. Furthermore the diagonal entries σi = Σi,i of Σ satisfy
σ1 ≥ σ2 ≥ · · · ≥ σd > 0. For notational convenience, assume that σi = 0 for i > d.

(a) (6 pts) It turns out that the ridge regression optimizer (with λ > 0) in the V-transformed
coordinates

ŵridge = arg min
w
‖XVw − y‖22 + λ‖w‖22

has the following expression:

ŵridge = diag(
σi

λ+ σ2
i

)U>y. (5)

Use ŷtest = x>testVŵridge to denote the resulting prediction for a hypothetical xtest. Using (5)
and the appropriate scalar {βi}, this can be written as:

ŷtest = x>test

d∑
i=1

viβiu
>
i y. (6)

What are the βi ∈ R for this to correspond to (5) from ridge regression?
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(b) (12 pts) Suppose that we do k-PCA-OLS — i.e. ordinary least squares on the reduced k-
dimensional feature space obtained by projecting the raw feature vectors onto the k < d prin-
cipal components of the covariance matrix X>X. Use ŷtest to denote the resulting prediction
for a hypothetical xtest,

It turns out that the learned k-PCA-OLS predictor can be written as:

ŷtest = x>test

d∑
i=1

viβiu
>
i y. (7)

Give the βi ∈ R coefficients for k-PCA-OLS. Show work.
Hint 1: some of these βi will be zero. Also, if you want to use the compact form of the SVD,
feel free to do so if that speeds up your derivation.

Hint 2: some inspiration may be possible by looking at the next part for an implicit clue as to
what the answer might be.
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(c) (6 pts) For the following part, d = 5. The following β := (β1, . . . , β5) (written out to two
significant figures) are the results of OLS (i.e. what we would get from ridge regression in the
limit λ → 0), λ-ridge-regression, and k-PCA-OLS for some X,y (identical for each method)
and λ = 1, k = 3. Write down which procedure was used for each of the three sub-parts
below.
We hope this helps you intuitively see the connection between these three methods.

Hint: It is not necessary to find the singular values of X explicitly, or to do any numerical
computations at all.

(i) β = (0.01, 0.1, 0.5, 0.1, 0.01)

(ii) β = (0.01, 0.1, 1, 0, 0)

(iii) β = (0.01, 0.1, 1, 10, 100)

7 Kernel PCA (24 points)

In lectures, discussion, and homework, we learned how to use PCA to do dimensionality reduction
by projecting the data to a subspace that captures most of the variability. This works well for data
that is roughly Gaussian shaped, but many real-world high dimensional datasets have underlying
low-dimensional structure that is not well captured by linear subspaces. However, when we lift
the raw data into a higher-dimensional feature space by means of a nonlinear transformation, the
underlying low-dimensional structure once again can manifest as an approximate subspace. Linear
dimensionality reduction can then proceed. As we have seen in class so far, kernels are an alter-
nate way to deal with these kinds of nonlinear patterns without having to explicitly deal with the
augmented feature space. This problem asks you to discover how to apply the “kernel trick” to
PCA.

Let X ∈ Rn×` be the data matrix, where n is the number of samples and ` is the dimension of the
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raw data. Namely, the data matrix contains the data points xj ∈ R` as rows

X =


x>1
x>2
...

x>n

 ∈ Rn×`. (8)

(a) (5 pts) Compute XX> in terms of the singular value decomposition X = UΣV> where
U ∈ Rn×n,Σ ∈ Rn×` and V ∈ R`×`. Notice that XX> is the matrix of pairwise Euclidean
inner products for the data points. How would you get U if you only had access to XX>?
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(b) (7 pts) Given a new test point xtest ∈ R`, one central use of PCA is to compute the projection
of xtest onto the subspace spanned by the k top singular vectors v1,v2, . . . ,vk.

Express the scalar projection zj = v>j xtest onto the j-th principal component as a function
of the inner products

Xxtest =

〈x1,xtest〉
...

〈xn,xtest〉

 . (9)

Assume that all diagonal entries of Σ are nonzero and non-increasing, that is σ1 ≥ σ2 ≥ · · · >
0.

Hint: Express V> in terms of the singular values Σ, the left singular vectors U and the data
matrix X. If you want to use the compact form of the SVD, feel free to do so.
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(c) (12 pts) How would you define kernelized PCA for a general kernel function k(xi,xj) (to
replace the Euclidean inner product 〈xi,xj〉)? For example, the RBF kernel k(xi,xj) =

exp
(
−‖xi−xj‖2

δ2

)
.

Describe this in terms of a procedure which takes as inputs the training data points
x1,x2, . . . ,xn ∈ R` and the new test point xtest ∈ R`, and outputs the analog of the
previous part’s zj coordinate in the kernelized PCA setting. You should include how
to compute U from the data, as well as how to compute the analog of Xxtest from the
previous part.
Invoking the SVD or computing eigenvalues/eigenvectors is fine in your procedure, as long as it
is clear what matrix is having its SVD or eigenvalues/eigenvectors computed. The kernel k(·, ·)
can be used as a black-box function in your procedure as long as it is clear what arguments it
is being given.

8 Multiple Choice Questions (14 points)

For these questions, select all the answers which are correct. You will get full credit for selecting
all the right answers. On some questions, real-valued partial credit will be assigned. You will be
graded on your best seven of nine, so feel free to skip up to two of them.

(a) Let X ∈ Rn×d with n ≥ d. Suppose X = UΣV> is the singular value decomposition of X
where σi = Σi,i are the diagonal entries of Σ and satisfy σ1 ≥ σ2 ≥ · · · ≥ σd while ui and vi
are the ith columns of U and V respectively. Which of the following is the rank k approx-
imation to X that is best in the Froebenius norm. That is, which low rank approximation,
Xk, for X yields the lowest value for ||X−Xk||2F ?

©
∑k

i=1 σiuiv
>
n−i

©
∑k

i=1 σiuiv
>
i ©

∑d
i=d−k+1 σiuiv

>
i ©

∑k
i=1 σiun−iv

>
i

(b) Consider a simple dataset of points (xi, yi) ∈ R2, each associated with a label bi which is −1
or +1. The dataset was generated by sampling data points with label −1 from a disk of radius
1.0 (shown as filled circles in the figure) and data points with label +1 from a ring with inner
radius 0.8 and outer radius 2.0 (shown as crosses in the figure). Which set of polynomial
features would be best for performing linear regression, assuming at least as much data
as shown in the figure?
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© 1, xi

© 1, xi, yi

© 1, xi, yi, x
2
i , xiyi, y

2
i

© 1, xi, yi, x
2
i , xiyi, y

2
i , x

3
i , y

3
i , x

2
i yi, xiy

2
i

(c) Which of the following is a valid kernel function for vectors of the same length, x and y?

© k(x,y) = x>y

© k(x,y) = e−
1
2
||x−y||22

© k(x,y) = (1 + x>y)p for some degree p

© k(x,y) = k1(x,y) − k2(x,y) for valid
kernels k1 and k2.

(d) During training of your model, both independent variables in the matrix X ∈ Rn×d and de-
pendent target variables y ∈ Rn are corrupted by noise. At test time, the data points you are
computing predictions for, xtest, are noiseless. Which method(s) should you use to estimate
the value of ŵ from the training data in order to make the most accurate predictions
ytest from the noiseless test input data, Xtest? Assume that you make predictions using
ytest = Xtestŵ.

© OLS
© Ridge regression

© Weighted Least Squares

© TLS
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(e) Assume you have n input data points, each with d high quality features (X ∈ Rn×d) and
associated labels (y ∈ Rn). Suppose that d � n and that you want to learn a linear predictor.
Which of these approaches would help you to avoid overfitting?

© Preprocess X using k � n random pro-
jections

© Preprocess X using PCA with k � n

components.
© Preprocess X using PCA with n compo-

nents.

© Add polynomial features

© Use a kernel approach

© Add a ridge penalty to OLS

© Do weighted least squares

(f) Which methods could yield a transformation to go from the two-dimensional data on the
left to the two-dimensional data on the right?

© Random projections
© PCA

© Use of a kernel

© Adding polynomial features

(g) Your friend is training a machine learning model to predict disease severity based on k different
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health indicators. She generates the following plot, where the value of k is on the x axis.

Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance

(h) Your friend is training a machine learning model to predict disease severity based on k different
health indicators. She generates the following plot, where the value of k is on the x axis.

Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance
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(i) Your friend is training a machine learning model to predict disease severity based on k different
health indicators. She generates the following plot, where the value of k is on the x axis.

Which of these might the y axis represent?

© Training Error
© Validation Error

© Bias

© Variance

9 Your Own Question
Write your own question, and provide a thorough solution.

Writing your own problems is a very important way to really learn the material. The famous
“Bloom’s Taxonomy” that lists the levels of learning is: Remember, Understand, Apply, Analyze,
Evaluate, and Create. Using what you know to create is the top-level. We rarely ask you any HW
questions about the lowest level of straight-up remembering, expecting you to be able to do that
yourself. (e.g. make yourself flashcards) But we don’t want the same to be true about the highest
level.

As a practical matter, having some practice at trying to create problems helps you study for exams
much better than simply counting on solving existing practice problems. This is because thinking
about how to create an interesting problem forces you to really look at the material from the
perspective of those who are going to create the exams.

Besides, this is fun. If you want to make a boring problem, go ahead. That is your prerogative. But
it is more fun to really engage with the material, discover something interesting, and then come up
with a problem that walks others down a journey that lets them share your discovery. You don’t
have to achieve this every week. But unless you try every week, it probably won’t happen ever.
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