CEC30/MEC85 Midterm Examination 1

February 21th, 1710-1800

NAME :

SID :

Problem 1: _ / 22 points

Problem 2: _ / 21 points

Problem 3: _ / 21 points

Notes: 1. Write your name and SID on the cover page.
2. Turn off your cell phone.
3. Record your answers only in the pages provided.
4. You may not ask questions during the exam.

Problem 1 ($6+12+4$ points)

A homogeneous square box of side a and weight W is initially at rest on a frictionless horizontal plane. A force acting at the bottom right corner B lifts the box to an angle θ with the horizontal plane, as shown in the figure.

(a) Draw the free-body diagram of the box in the rotated configuration assuming that it is in equilibrium.
(b) Find the force F_{B} acting at B as a function of the angle θ.
(c) To check the accuracy of the formula derived in part (b), examine the value of F_{B} for $\theta=0+$ (that is, just as the right side of the box is lifted from the plane) and $\theta=\pi / 4$. Are they consistent with your intuition?
(a)

(b) Moment at A: $\sum M_{A}=0$

$$
\left(\text { From } \sum F_{x}: E_{B}=F_{B} \underline{j}\right)
$$

$$
\begin{aligned}
& d=\frac{1}{\sqrt{2}} a \\
& \varphi=\theta+45^{\circ} \\
& a \cos \theta F_{B}=d \cos \varphi \omega \\
& F_{B}=\frac{1}{\sqrt{2}} \frac{\cos \varphi}{\cos \theta} \omega \\
&=\frac{1}{\sqrt{2}} \frac{\cos \left(\theta+45^{\circ}\right)}{\cos \theta} \omega
\end{aligned}
$$

(c) for $\theta=0+\quad F_{B}=\frac{1}{\sqrt{2}} \frac{\cos \left(45^{\circ}\right)}{\cos \left(0^{\circ}\right)} \omega=\frac{1}{2} \omega$

$$
\left(\sum F_{y}: \quad A_{y}=W-F_{B}=\frac{1}{2} \omega J .\right)
$$

for $\theta=\frac{\pi}{4} \quad\left(=45^{\circ}\right) \quad F_{B}=\frac{1}{\sqrt{2}} \frac{\cos \left(90^{\circ}\right)}{\cos \left(45^{\circ}\right)} \omega=0$
(W and A_{y} collinear J.)

Problem 2 (6+12+3 points)
A three-dimensional massless solid is kept in place by a ball-socket support at point A and three rigid links at points B, D, and E , and is subject to an external force F and an external moment M, as in the figure below.

(a) Draw the free body diagram of the solid.
(b) Determine all the reactions.
(c) Given the external load, which of the three rigid links would be possible to replace with inextensible cables?

(b)

$$
\begin{array}{ll}
\sum F_{y}: & A_{y}=F(=100 \mathrm{kN}) \\
\sum M_{y}^{A}: & 2 b \cdot E_{z}=0 \Rightarrow E_{z}=0 \\
\sum M_{x}^{A}: & M=a B_{z} \Rightarrow B_{z}=\frac{1}{a} M=\frac{1}{a} 200 \mathrm{kNm} \\
\sum F_{z}: & A_{z}=B_{z} \Rightarrow A_{z}=\frac{1}{a} 200 \mathrm{kNm} \\
\sum M_{z}^{A}: & a \cdot D_{x}=b F \Rightarrow D_{x}=\frac{b}{a} F=\frac{b}{a} 100 \mathrm{kN} \\
\sum F_{x}: & A_{x}=D_{x} \Rightarrow A_{x}=\frac{b}{a} F=\frac{b}{a} 100 \mathrm{kN}
\end{array}
$$

(c) Which links are not in compression?

Only at $E \quad\left(E_{z}=0\right)$
Chads:

$$
\begin{aligned}
& \underline{M}_{A}=\left(M-a B_{z}\right) \underline{i}+\left(-2 b E_{z}\right) \underline{j}+\left(b F-a D_{x}\right) \underline{k} \\
& \underline{R}=\left(D_{x}-A_{x}\right) \underline{i}+\left(F-A_{y}\right) \underline{j}+\left(E_{z}+A_{z}-B_{z}\right) \underline{k} \\
& \Rightarrow B_{z}=\frac{1}{a} M \quad E_{z}=0 \quad D_{x}=\frac{b}{a} F \\
& \Rightarrow A_{x}=\frac{b}{a} F \quad A_{y}=F \quad A_{z}=\frac{1}{a} M
\end{aligned}
$$

Problem 3 ($3+3+6+9$ points)
Consider the simply-supported two-dimensional truss shown in the figure below.

(a) Argue that the truss is statically determinate.
(b) Determine the external reactions at points A and B.
(c) Determine the forces of members IJ and GJ, and state explicitly if they are in tension or compression.
(d) Determine the forces of members CE, EF, and EG, and state explicitly if they are in tension or compression.

(a)

$$
\left.\begin{array}{l}
r=3 \\
n=17
\end{array}\right\} 20 \text { untarowus } \quad j=10 \rightarrow 20 \text { equs }
$$

All consequtive triangles \& proper external support S.
(b)

$$
\begin{aligned}
& \sum M_{A}: \quad 4 m \cdot J_{y}=\underbrace{2 m \cdot 40 \mathrm{kN}}_{\begin{array}{c}
\text { exploit symmely } \\
\text { of vertical forces }
\end{array}}+1 \mathrm{~m} \cdot 20 \mathrm{kN}+2 \mathrm{~m} \cdot 10 \mathrm{kN} \\
&=120 \mathrm{kNm} \Rightarrow J_{y}=30 \mathrm{kN} \\
& \sum F_{x}: \quad A_{x}=20 \mathrm{kN}+10 \mathrm{kN}=30 \mathrm{kN} \\
& \sum F_{y}: \quad A_{y}=10 \mathrm{kN}+20 \mathrm{kN}+10 \mathrm{kN}-J_{y}=10 \mathrm{kN}
\end{aligned}
$$

(c) $P_{G J}$

$$
\begin{aligned}
\sum F_{x}: & P_{G J}=0 \quad \text { (neither) } \\
\Sigma F_{y}: & P_{1 J}=- \\
& (\text { compression) }
\end{aligned}
$$

Joint E:

$$
\sum F_{x}: \quad P_{E G}=P_{C E}=50 \mathrm{kN} \text { (tension) }
$$

