Solutions to Midterm 1

February 20, 2018

Problem 2

Use the lens equation to find the image distance

$$
\begin{aligned}
\frac{1}{\frac{5 f}{3}}+\frac{1}{d_{i_{1}}} & =\frac{1}{f} \\
d_{i_{1}} & =\frac{5 f}{2}
\end{aligned}
$$

This is a real image. Now for the second lens, object distance is $d_{o_{2}}=-\frac{f}{2}$ since it is to the right of the lens. Use the lens equation to find the image distance

$$
\begin{aligned}
-\frac{2}{f}+\frac{1}{d_{i_{2}}} & =-\frac{1}{f} \\
d_{i_{2}} & =f
\end{aligned}
$$

This is also a real image. Important features of the ray diagram - show two different light rays that converge to appear to meet at $d_{i_{1}}$, diverge to meet at $d_{i_{2}}$ in the end

Point distribution for each image

1. Using lens equation - 3 points
2. Correct object distance - 3 points
3. Correct focal length - 1 point
4. Finding correct image distance -3 points
5. Correctly saying whether real or virtual image - 3 points

For the ray diagram - 1 point for each feature of each ray - total 4 points

Problem 3

From the geometry of the problem with r being the angle of refraction,

$$
y_{1}=W \tan r
$$

From Snell's law, we have

$$
n \sin r=\sin \theta
$$

Now

$$
\begin{aligned}
\tan r & =\frac{\sin r}{\cos r} \\
& =\frac{\frac{\sin \theta}{n}}{\sqrt{1-\frac{\sin ^{2} \theta}{n^{2}}}} \\
& =\frac{\sin \theta}{\sqrt{n^{2}-\sin ^{2} \theta}}
\end{aligned}
$$

Thus, $y_{1}=\frac{W \sin \theta}{\sqrt{n^{2}-\sin ^{2} \theta}}$.
Now, $y_{2}=y-y_{1}$ where $y=W \tan \theta$. Thus, we have

$$
y_{2}=W \sin \theta\left(\frac{1}{\cos \theta}-\frac{1}{\sqrt{n^{2}-\sin ^{2} \theta}}\right)
$$

In the limit of $n \rightarrow 1$, the denominator of the second term becomes $\cos \theta$ as well and thus, they cancel to give $y_{2}=0$. This is precisely what is expected since there should be no deviation in that limit.

Point distribution

1. Using trigonometry to relate y_{1} to $W-4$ points
2. Using Snell's law correctly - 4 points
3. Expressing y_{1} in terms of n, W and $\theta-3$ points
4. Finding y_{2} using trigonometry to get $y-4$ points
5. Expressing y_{2} in terms of n, W and $\theta-2$ points
6. Showing that y_{2} goes to zero in the limit -3 points

Solutions to Midterm Problems 1 and 4

Canxun Zhang

February 21, 2018

Problem 1

(a) The lens equation: (2pts)

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

The focal length: (1pt)

$$
f=D
$$

The object distance: (1pt)

$$
d_{o}=D-\epsilon
$$

The image distance: (2pts)

$$
d_{i}=-\frac{D(D-\epsilon)}{\epsilon}
$$

The image is virtual since $d_{i}<0$. (2pts)
Total: 8pts.
(b) The lens equation: (2pts)

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

The focal length: (1pt)

$$
f=D
$$

The object distance: (1pt)

$$
d_{o}=D-\left(-\frac{D(D-\epsilon)}{\epsilon}\right)=\frac{D^{2}}{\epsilon}
$$

The image distance: (2pts)

$$
d_{i}=\frac{D^{2}}{D-\epsilon} \rightarrow D
$$

The image is real since $d_{i}>0$. (2pts)
Total: 8pts.

(c) $(4 \mathrm{pts})$
(by Wenxin Zhang)

Problem 4

(a) The path difference between two adjacent slits: (3pts)

$$
\Delta l=d \sin \theta
$$

The phase difference between two adjacent slits: (3pts)

$$
\delta=k d \sin \theta=2 \alpha
$$

The modulating factor: (4 pts)

$$
f=\frac{\sin (3 \delta / 2)}{\sin (\delta / 2)}=\frac{\sin 3 \alpha}{\sin \alpha}
$$

Total: 10pts.
(b)
$\frac{\sin 3 \alpha}{\sin \alpha}=\frac{\sin 2 \alpha \cos \alpha+\cos 2 \alpha \sin \alpha}{\sin \alpha}=2 \cos ^{2} \alpha+\cos 2 \alpha=2\left(1-\sin ^{2} \alpha\right)+1-2 \sin ^{2} \alpha=3-4 \sin ^{2} \alpha$
2 pts for every step; total: 8pts.
(c) Maximum for f^{2} corresponds to minimum for $\sin ^{2} \alpha$: $(3 \mathrm{pts})$

$$
\sin \alpha=0
$$

The two smallest positive values: (3 pts)

$$
\alpha=\frac{\pi}{2}, \pi
$$

Minimum for f^{2} corresponds to $f=0$. (2pts)
Solve for $\sin \alpha:(2 \mathrm{pts})$

$$
\sin \alpha= \pm \frac{\sqrt{3}}{2}
$$

The two smallest positive values: (2 pts)

$$
\alpha=\frac{\pi}{3}, \frac{2 \pi}{3}
$$

Total: 12pts.

