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Physics 110B Fall 2003 (Strovink)

FINAL EXAMINATION

Directions: Do all six problems, which have unequal weight. This is a closed-book closed-note exam
except for Griffiths, Pedrotti, a copy of anything posted on the course web site, and anything in your
own original handwriting (not Xeroxed). A table of Fourier transforms is included with the exam.
Calculators are not needed, but you may use one if you wish. Laptops and palmtops should be turned
off. Use a bluebook. Do not use scratch paper – otherwise you risk losing part credit. Show all your
work. Cross out rather than erase any work that you wish the grader to ignore. Justify what you do.
Express your answer in terms of the quantities specified in the problem. Box or circle your answer.

Problem 1. (30 points)
A point charge e travelling on the z axis has
position

r(t) = +ẑβct (t < 0)
= −ẑβct (t > 0) ,

where β is a positive constant that is not � 1.
That is, the charge reverses direction instanta-
neously at t = 0, while it is at the origin. The
fields that the charge produces are viewed by an
observer at (x, 0, 0), where x > 0.

(a.) (15 points)
What magnetic field 
B does the observer see at
t = 0?

(b.) (15 points)
At time t such that ct = x (exactly!), what is the
direction of the electric field 
E seen by the ob-
server? (You need consider only the part of the
total electric field which is dominant at exactly
that time.) Justify your answer.

Problem 2. (30 points)
A plane wave of wavelength λ is normally inci-
dent on a thin film that is tinted various shades
of gray. The ratio of incident to transmitted
field amplitude is the aperture function g(
s),
where 
s is a vector from the origin (taken on
the downstream surface of the film) to another
point on its downstream surface. This film has
an aperture function

g(
s) = e−s2/2d2
.

Because this aperture function is cylindrically
symmetric, the outgoing diffraction pattern is

also cylindrically symmetric: it is a function of
θ, the polar angle of the observer relative to the
beam axis. You may make the approximations

θ � 1

d2 � 2λD ,

where D is the distance from the film to the
observer.

Calculate the irradiance ratio

R(θ) = I(θ)
I(θ = 0)

.

Problem 3. (35 points)
The irradiance I0 of a mystery light beam is at-
tenuated by each of four devices, applied one
at a time: (A) a grey filter passing half the
incident irradiance; (B) an x̂ polarizer; (C) a
1√
2
(x̂+ ŷ) polarizer; and (D) a device consisting

of a quarter-wave plate (qwp) with slow axis at
+45◦ to x̂, followed by an x̂ polarizer, followed
by a qwp with slow axis at −45◦ to x̂. The at-
tenuated irradiances observed are, respectively,

IA = 1
2I0

IB = 1
2

(
1 + 1√

2

)
I0

IC = 1
2I0

ID = 1
2

(
1 + 1√

2

)
I0 .

With devices (A) through (D) no longer in the
picture, device (E) is inserted into the beam. It
is the same as device (D) except that the x̂ po-
larizer is rotated to become a ŷ polarizer. What
irradiance IE is observed?



Problem 4. (35 points)
Electromagnetic waves of frequency ω are nor-
mally incident from vacuum upon a thin region
of dilute material with constant ohmic conduc-
tivity σ. The space downstream of this region
is also vacuum. Within the material, denote the
complex wave vector k̃ by

k̃ = k + iκ ,

where k and κ are real constants. (For this prob-
lem, κ is not supplied; you must calculate it.)
The material has negligible magnetic properties,
so you may approximate µ ≈ µ0. The effect of
its bound electrons is also negligible, so you may
approximate the real part of k̃ by

Re k̃ ≡ k ≈ ω

c
.

(This is equivalent to taking ε ≈ ε0, where ε is
the real part of the dielectric constant.) Finally,
when it is multiplied by Re k̃, the thickness d of
the material is chosen so that

kd = π

exactly. Define

β ≡ σ

ε0ω
.

In the limit β � 1, including terms of order β
but neglecting those of higher order, calculate
the (possibly complex) fraction r of the incident
complex electric field amplitude that is reflected.

Problem 5. (35 points)
At a future linear positron-electron (e+e−) col-
lider, (not necessarily resonant) production of
top quark-antiquark pairs (tt̄) is expected to
occur via the reaction

e+ + e− → t+ t̄ .

Very soon thereafter, the top quarks decay ac-
cording to

t → W+ + b

t̄ → W− + b̄ .

Here you may neglect all rest masses except for
those of the t and W (particle and antiparticle

masses are the same); for the purposes of this
problem, you may approximate

mt = 2mW .

Under all circumstances, it would be highly im-
probable for one of the W ’s to be produced
completely at rest in the laboratory. But is it
kinematically possible? If so, what restriction, if
any, is placed on the equal total energy E of the
positron or electron beams?

Problem 6. (35 points)
Lorentz frame SBA is related to the laboratory
frame S by a sequence of two Lorentz transfor-
mations: (1) A boost (A) by rapidity η along x̂;
(2) a boost (B) by the same η along ŷ. Lorentz
frame SAB is related to the lab frame by applying
the same two boosts, but in the opposite order.
Here, as usual, η = tanh−1 β, where βc is the rel-
ative speed characterizing each transformation.

In the limit β → 0, retaining terms of order β2,
show that frames SBA and SAB are the same,
except that one is rotated with respect to the
other. Solve for the angle θ by which frame SAB

is rotated with respect to frame SBA, and specify
the axis about which this rotation occurs.


