MATH 54 MIDTERM 1 (001)
PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Calculate the general solution to the linear system with the following augmented matrix:

$$
\left(\begin{array}{ccccc|c}
1 & 0 & -1 & 0 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution:

$$
\left.\begin{array}{l}
\left(\left.\begin{array}{cccc|c}
1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array} \right\rvert\,\right. \\
0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc|c}
1 & 0 & -1 & 0 & 0 & -2 \\
0 & 0 & 1 & 2 & 0 & -4 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & -4 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{c}
-6
\end{array}\right)
$$

where x_{2}, x_{4}, are free
(b) Will the above coefficient matrix always give a consistent linear system? Justify your answer.
Solution:

$$
\text { No, it } \underline{b}=\binom{i}{!} \text { then the Sian coleman is a }
$$

pivot, hence the system is inconsistent
2. (25 points) Calculate the determinant and inverse matrix of $\left(\begin{array}{cccc}0 & 0 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$.

Solution:
Smith $1^{\text {st }}$ and

$$
\begin{aligned}
& \left(\begin{array}{llll|llll}
0 & 0 & -2 & 1 & 1 & 0 & 0 & 0
\end{array} 4^{\text {th }}\right. \\
& \longrightarrow\left(\begin{array}{cccc|cccc}
1 & 1 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \\
& \text { detanminat }=(-1) \cdot 1 \cdot 1 \cdot(-1) \cdot(-1)=-1 \downarrow \\
& \left(\begin{array}{cccc|cccc}
1 & 1 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -2 & 0
\end{array}\right)<\left(\begin{array}{ccccccc}
1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -2
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \rightarrow\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & -2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 & 0 & -2
\end{array}\right) \\
& \left(\begin{array}{llll|cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 2 & 0
\end{array}\right) \leftarrow\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 & 0 & -2
\end{array}\right)
\end{aligned}
$$

3. (25 points) Find all possible value of a, b, c such that $\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ is a solution to homogeneous linear system

$$
\left(\begin{array}{ccc|c}
a & b & c-1 & 0 \\
b & c & c+2 & 0 \\
2 c & -b & a & 0
\end{array}\right)
$$

Solution:

$$
\left.\begin{array}{l}
a+b-(c-1)=0 \\
b+c-(c+2)=0 \\
z c-b-a=0
\end{array} \quad \Rightarrow \begin{array}{c}
a+b-c=-1 \\
b \\
-a \\
-1
\end{array} \quad \begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
-1 & 2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & -1 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

4. (25 points) (a) Let A be a 4×5 matrix with the following properties:

The second column is non-zero and is a scalar multiple of the first. The third column is not a scalar multiple of the first.
Write the echelon form matrices which are potentially row equivalent to A.

Solution:

$\left(\begin{array}{lllll}1 & * & * & * & * \\ 0 & 0 & \pi & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & \text { min }\end{array}\right)$
(b) Let two matrices A and B satisfy the above conditions. If T_{A} and T_{B} are both onto must A and B be row equivalent? Justify your answer.

Solution:

$N_{0}: A=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{lllll}1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\underset{\rightarrow}{T} \rightarrow$ med edelon marius
Dinceret Redyed edelon matrices
A and B row equivalt \Leftrightarrow exactly same redned ed den
5. (25 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
T\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
t+1 \\
t+2
\end{array}\right), T\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 t+2 \\
2 t+2 \\
4 t+4
\end{array}\right), T\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-t \\
-1 \\
-t
\end{array}\right)
$$

Calculate the standard matrix of T. For what values of t is T one-to-one? For what value of t is T onto? Justify your answer.

$$
\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & t & 1 \\
1 & 1 & t \\
0 & t & t+2
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & t & 1 \\
0 & 0 & t+1 \\
0 & t & t+2
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & t & 1 \\
0 & 0 & t+1 \\
0 & 0 & t+1
\end{array}\right)
$$

Tone -t o-om it and only it $t \neq 0$ and $t \neq-1$ T never onto. Never Pious in lat row.

$$
\begin{aligned}
& \text { Solution: } \\
& T\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\frac{1}{2} T\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
t+1 \\
t+1 \\
2 t+2
\end{array}\right) \\
& T\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-t \\
-1 \\
-t
\end{array}\right) \Rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
t \\
1 \\
t
\end{array}\right) \\
& \Rightarrow T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=T\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
t \\
t+2
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=T\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

