
Midterm #1, Physics 5C, Spring 2018. Write your responses below, on the back, or on the extra pages.
Show your work, and take care to explain what you are doing; partial credit will be given for incomplete
answers that demonstrate some conceptual understanding. Cross out or erase parts of the problem you wish
the grader to ignore.

Problem 1: (20 pts)

A particle is in an initial state with a wavefunction1

Ψ(x, t = 0) = A
√
xeiax for 0 < x < L Ψ(x, t = 0) = 0 otherwise (1)

where A and a are real constants.

1a) Determine the constant A

Normalization requires ∫ ∞
−∞

Ψ∗Ψdx =

∫ L

0

|A|2xdx = |A|2L
2

2
= 1 (2)

so

A =

√
2

L
→ Ψ(x, t = 0) =

√
2

L

√
xeiax (3)

up to an arbitrary complex phase, which we choose to be zero.

1b) Determine the probability that a measurement finds the particle between x = 0 and x = L/2.

The probability is ∫ L/2

0

Ψ∗Ψdx =

∫ L/2

0

2

L2
xdx =

x2

L2

∣∣∣∣L/2
0

=
1

4
(4)

1c) An experimenter sets up a very large number of particles, each with the wavefunction Ψ(x, t = 0), and
measures the position x of each. What is the average value of these measurements?

The problem is asking for the expectation value

〈x〉 =

∫ ∞
−∞

Ψ∗Ψxdx =

∫ L

0

2

L2
x2dx =

2

3

x3

L2

∣∣∣∣L
0

=
2

3
L (5)

1d) Find the minimum possible uncertainty (i.e. standard deviation) σp of the momentum of the particle.

The uncertainty principle gives σp ≥ h̄/2σx. So we calculate the uncertain in position

〈
x2
〉

=

∫ ∞
−∞

Ψ∗Ψx2dx =

∫ L

0

2

L2
x3dx =

2

4

x4

L2

∣∣∣∣L
0

=
1

2
L2 (6)

The uncertainty is then

σ2
x =

〈
x2
〉
− 〈x〉2 =

L2

2
− 4L2

9
=

9L2

18
− 8L2

18
=
L2

18
(7)

so σx = L/
√

18 Then by the uncertainty principle σp ≥ h̄/2σx and the minimum possible value is

σp =
√

18h̄/2L (8)

1Strictly speaking, this is not a good wavefunction since it has discontinuities, e.g. at x = L. But this issue does not affect
any part of this problem, so don’t worry about it. We can consider the given ψ(x) as an approximation to a wavefunction that
smoothly but sharply drops to zero at x = L.
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Problem 2: (6 pts)

A particle of mass m attached to a (massless) rigid rod of length R. The particle can rotate in a circle
around the center at the fixed distance R. The classical expression for the particle energy is E = (1/2)mv2

and for angular momentum L = mvR.

2a) Use Bohr’s approach of combining angular momentum quantization with the classical expressions for
E and L to determine the possible rotational energy states of this particle.

Bohr’s quantized angular momentum in units of hbar, L = nh̄. From the classical expression L = mvR this
implies mvR = nh̄, or v = nh̄/mR. The energy is then

E =
1

2
mv2 =

1

2

mn2h̄2

m2R2
=

n2h̄2

2mR2
(9)

This expression is very similar to the particle in the box energies (just without a factor of π2) so we know
the units are correct.

2b) The particle can make a transition (a ”quantum leap”) from a higher rotational energy state to a
lower energy state and emit light (a photon). What is the spectrum – i.e., the possible values of the angular
frequencies, ω, of photons that can be emitted2?

The frequency of the photon is h̄ω = ∆E where ∆E is the difference in energy between the two states. From
the above we have

∆E = Ea − Eb =
n2ah̄

2

2mR2
− n2b h̄

2

2mR2
(10)

where na and nb are integers with na > nb (to make sure the change in energy is positive). So the frequency
of the photon is

ω =
h̄

2mR2
(n2a − n2b) (11)

2This simple system is not so bad an approximation for diatomic molecules – like carbon and oxygen bonding to form CO
(carbon-monoxide) – which physicists probe by looking at the spectral lines from quantized rotational energy states.
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Problem 3: (18 pts)

Schrodinger’s initial attempt at writing down an equation (before he came up with the Schrodinger equation)
was an equation of the sort

h̄2
∂2Ψ

∂t2
= h̄2c2

∂2Ψ

∂x2
−m2c4Ψ− V (x)Ψ (12)

where m is the mass of the particle and c the speed of light.

3a) What is the dispersion relation between the ω and k of monochromatic waves for this equation when
V (x) = 0?

We plug in a monochromatic wave solution Ψ = Aeikx−ωt. Note that each time derivative gives a factor −iω
and each space derivative a factor ik. We get

h̄2(−iω)2Ψ = h̄2c2(ik)2Ψ−m2c4Ψ (13)

or
−h̄2ω2 = −h̄2c2k2 −m2c4 (14)

h̄2ω2 = h̄2c2k2 +m2c4 (15)

So the dispersion relation is

ω(k) =

√
c2k2 +m2c4/h̄2 (16)

Notice that using the Einstein-Debroglie relations E = h̄ω, p = h̄k the dispersion relation can be written

E2 = p2c2 +m2c4 (17)

which is the relationship between energy and momentum in special relativity. So this equation (called the
Klein-Gordan equation) is an attempt at a special relativistic equation – unfortunately it does not describe
electrons but spin 0 particles.

3b) A wavepacket is constructed by summing up monochromatic waves narrowly spread around a wavenum-
ber k0 (i.e., with wavenumbers between k0 −∆k and k0 + ∆k). How fast does this wave packet move?

The wave packet velocity is given by the group velocity

vg =
∂ω

∂k
=

c2k0√
c2k20 +m2c4/h̄2

(18)

Or writing in terms of Debroglie momentum p = hk0

vg =
c2p√

c2p2 +m2c4
=

c√
1 +m2c4/p2

(19)

We see that as p → ∞ that vg → c. So this group velocity can never exceed c, in accordance with special
relativity (and in contrast to the Schrodinger equation group velocity vg = h̄k0/m = p/m).

Using separation of variables, we can write the time-independent form of this equation in terms of ψ(x), the
spatial part of the wavefunction

−h̄2c2 ∂
2ψ

∂x2
+m2c4ψ(x) + V ψ(x) = E2ψ(x) (20)

where E is the energy. Consider the infinite square well potential (aka particle in a box) where V (x) = 0 for
0 < x < L and V (x) =∞ otherwise.

3c) Assuming E2 > m2c4, solve this time-independent equation to determine the possible energies3 of a
particle in the infinite square well.

3You may notice that, mathematically, the solutions allow for negative energies, which is one of the issues that made
Schrodinger move on.

3



For V = 0 we write the equation inside the well as

−h̄2c2 ∂
2ψ

∂x2
= (E2 −m2c4)ψ(x) (21)

∂2ψ

∂x2
= − 1

c2h̄2
(E2 −m2c4)ψ(x) = −k2ψ(x) (22)

where

k =

√
(E2 −m2c4)

h̄c
(23)

Solution is
ψ(x) = A sin(kx) +B sin(kx) (24)

Applying the boundary conditions, we have ψ(0) = 0 implies B = 0 so ψ(x) = A sin(kx) and the BC
ψ(L) = 0 gives

k =
nπ

L
(25)

This implies
n2π2

L2
=

(E2 −m2c4)

h̄2c2
(26)

n2h̄2c2π2

L2
= (E2 −m2c4) (27)

and so

E = ±

√
n2h̄2c2π2

L2
+m2c4 (28)

3d) Show that states with E2 < m2c4 cannot exist.

If E2 < m2c4 we have the equation

∂2ψ

∂x2
= − 1

c2h̄2
(E2 −m2c4)ψ(x) = α2ψ(x) (29)

where

α =

√
(m2c4 − E2)

h̄c
(30)

is a real number (alternatively we see that the quantity k defined in part 3c becomes imaginary, so we could
define α = iκ) The solutions are now the real exponentials

ψ(x) = Ae−αx +Beαx (31)

We can see that as x→∞ the second term blows up instead of going to zero (as required by the BCs of the
infinite square well), so this implies B = 0. But as x → −∞ the first term blows up, implying A = 0. So
there is no solution that meets the boundary conditions except for the trivial case ψ(x) = 0 (which doesn’t
represent any particle at all).

One can alternatively apply the infinite square well boundary conditions specifically to get the same
result. At x = 0 we have

A+B = 0→ A = −B (32)

and at x = L
Ae−αL −AeαL = 0→ Ae−αL(1− e2αL) = 0 (33)

since e−αL is never zero we can divide both sides to get

A(1− e2αL) = 0 (34)

So either A = 0 or e2αL = 1. But in the latter case taking the natural log of both sides shows that 2αL = 0
or α = 0. From the definition of α this implies E2 = m2c4, in conflict with assumption E2 < m2c4. So there
is no (non-trivial) solution that meets the boundary conditions.
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Problem 4: (8 pts)

Consider the potential barrier

V (x) = 0 (for x < 0) V (x) = V0 for 0 < x < L V (x) = 0 for x > L (35)

A particle with energy E > V0 is incident on this barrier from the left (i.e., from x = −∞)

4a) Write down the solutions to time-independent Schrodinger Eq. in each of the 3 regions of the potential.

Call regions from left to right regions 1,2,3. The solutions are

ψ1(x) = Aeik1x +Be−ik1x (36)

ψ2(x) = Ceik2x +De−ik2x (37)

ψ3(x) = Feik1x +Ge−ik1x (38)

(39)

where

k1 =

√
2mE/h̄2 k2 =

√
2m(E − V0)/h̄2 (40)

4b) Write down the boundary conditions that relate the coefficients of the solution. You can assume that
there is no particle incident from the right (i.e., from x =∞).

We ignore any wave incident from the right, so set G = 0. The boundary conditions at x = 0 are

A+B = C +D (41)

ik1(A−B) = ik2(C −D) (42)

and at x = L

Ceik2L +De−ik2L = Feik1L (43)

ik2(Ceik2L −De−ik2L) = ik1Fe
ik1L (44)

(45)

or written all together more neatly

A+B = C +D (46)

A−B =
k2
k1

(C −D) (47)

Ceik2L +De−ik2L = Feik1L (48)

Ceik2L −De−ik2L =
k1
k2
Feik1L (49)

(50)

4c) Assume now that the particle incident from the left has energy E = h̄2π2/2mL2 + V0. Show that for
this special energy the particle is never reflected from the barrier.

For the energy specified, we see that the wavenumber in region 2 is k2 = π/L. Then the x = L boundary
conditions become

Ceiπ +De−iπ = Feik1L (51)

Ceiπ −De−iπ =
k1
k2
Feik1L (52)

(53)
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or since eiπ = e−iπ = −1

C +D = −Feik1L (54)

C −D = −k1
k2
Feik1L (55)

(56)

In the BCs at x = 0 we also have terms (C +D) and (C −D) so combining the two sets gives

A+B = −Feik1L (57)

A−B = −Feik1L (58)

These two equations imply
A+B = A−B → B = −B → B = 0 (59)

So the reflection coefficient R = |B|2/|A|2 = 0
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Problem 5:

A particle is in the n = 2 state of the symmetric infinite square well where V (x) = 0 for −L/2 < x < L/2
and V (x) = ∞ otherwise. All of the sudden, both sides of the well are moved outward such that the well
doubles in size, i.e. V (x) = 0 for −L < x < L and V (x) = ∞. Assume the wavefunction of the particle
remains unchanged during this transition.

5a) What is the probability that a measurement of the particle energy in the expanded box yields an energy
Eexp
n , where Eexp

n are the energy of stationary states (i.e., energy eigenvalues) in the expanded box? You
don’t have to carry out integrations, but properly set up any integrals you may need.

This problem is very similar to the ”parabola in a well” problem that you did on the homework, just with a
different initial wavefunction. Here the initial wavefunction of the particle is that of the n = 1 state in the
small well. For the symmetric well, the energy eigenstates are alternatively even (cosines) and odd (sines).
The ground state is even

ψ(x) =

√
2

L
cos(πx/L) for − L/2 < x < L/2 ψ(x) = 0 otherwise (60)

The energy eigenstates in the expanded box the wavefunctions are also the standard ones for the symmetric
infinite square well, just with L→ 2L, which gives

ψexp
n (x) =

√
1

L
cos(nπx/2L) n = 1, 3, 5, ... (even states) (61)

ψexp
n (x) =

√
1

L
sin(nπx/2L) n = 2, 4, 6... (odd states) (62)

The initial wavefunction can be written as a superposition of the energy eigenstates of the expanded well

ψ(x) =
∑
n

cnψ
exp
n (x) (63)

To determine the coefficients we use Fourier’s trick. For odd states these are

cn =

∫
ψ(x)ψexp

n (x)dx =

∫ L/2

−L/2

√
2

L
cos(πx/L)

√
1

L
sin(nπx/2L)dx (64)

cn =

√
2

L

∫ L/2

−L/2
cos(πx/L) sin(nπx/2L)dx (65)

The limits are from −L/2 to L/2 since the initial wavefunction is zero outside of this. For even states,
Fourier’s trick gives

cn =

√
2

L

∫ L/2

−L/2
cos(πx/L) cos(nπx/2L)dx (66)

The lowest energy state is given by n = 1 in the expanded well, which has a coefficeint

c1 =

√
2

L

∫ L/2

−L/2
cos(πx/L) cos(πx/2L)dx (67)

And the probability of measuring the ground energy is given by |c1|2. Note that for the even states we have
an integral of an odd function (sine) times an odd function (cosine) so the integral has to be cn = 0 by
symmetry. We saw the same behavior for the ”parabola in a box” homework problem.

5b) Before the well being expanded, the particle had some energy E. What is the probability that a
measurement of the particle energy after the well is expanded yields this same value of energy? Give a
number and explain how you arrived at it.

Initially the particle is in the n = 1 state of a well of length L, so has energy

Einit =
h̄2π2

2mL2
(68)
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In the expanded box of length 2L the allowed quantized energies are

Eexp
n′ =

h̄2π2n′2

2m(2L)2
=
h̄2π2n′2

8mL2
(69)

For the final energy to be measured to be the same as the initial energy the particle would need to be in the
n′ = 2 state of the expanded well. This is an odd state, so the cn = 0 as stated above. The probability is
hence zero.

The fact that the integral gives zero can be made clear by plotting up the functions below. The integral
of the product of the functions for the left side of the well exactly cancels the integral on the right side.
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