Math 1A (Fall 2017) Midterm I (Thursday September 14, 3:40-5:00)

1. Mark each of the following True (T) or False (F). No justification is necessary. (For each sub-problem, correct $=4 \mathrm{pts}$, no response $=2 \mathrm{pts}$, wrong $=0 \mathrm{pts}$.)
(1) (F) If f is an odd function and g is an even function then the composite function $f \circ g$ is odd.

In fact $f \circ g$ will always be even (and will only be odd if $f \circ g=0$). To see this, observe that $g(-x)=g(x)$ since g is even, so

$$
(f \circ g)(-x)=f(g(-x))=f(g(x))=(f \circ g)(x) .
$$

(2) (T) If f is a one-to-one function defined on \mathbb{R} then f^{-1} is also a one-to-one function.

This is true because f^{-1} has an inverse, namely f. Alternatively, for f^{-1} to be one-toone, it has to pass the horizontal line test, which is equivalent to f passing the vertical line test. This always happens because f is a function.
(3) (F) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$. Then $\lim _{x \rightarrow a} f(x) g(x)$ is either ∞ or 0 .

For example, $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ and $\lim _{x \rightarrow 0} x^{2}=0$, but $\lim _{x \rightarrow 0} \frac{1}{x^{2}} \cdot x^{2}=\lim _{x \rightarrow 0} 1=1$
(4) (T) The line $x=1$ is a vertical asymptote of $y=\frac{1}{x-1}$ because $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$.

It's true that $x=1$ is a vertical asymptote since $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}$ is indeed $-\infty$. One can see this by plotting the graph $y=\frac{1}{x-1}$. (One way to see that it's $-\infty$, not ∞ is: $x \rightarrow 1^{-}$ means in particular that $x<1$, so $x-1$ and thus also $\frac{1}{x-1}$ are negative-valued.)
(5) (F) If f is defined on $(0, \infty)$ and $f\left(\frac{1}{n}\right)=0$ for $n=1,2,3, \ldots$ then $\lim _{x \rightarrow 0^{+}} f(x)=0$.

The condition is not sufficient for the limit to be equal to 0 . You need that the values of $f(x)$ should approach 0 for all (for instance irrational) values of x approaching 0 . For a concrete example, $f(x)=\sin (\pi / x)$ is zero for $x=1, \frac{1}{2}, \frac{1}{3}, \ldots$ but $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist.
2. (15 pts) Answer the following.
(1) (5 pts) Compute $\sin \left(\tan ^{-1}(2)\right)$.

Solution 1: If you put $y=\tan ^{-1}(2)$ then $\tan y=2$ and $0<y<\pi / 2$ so this can be modeled by a right triangle with sides $1,2, \sqrt{5}$ such that y is the angle between sides $\sqrt{5}$ and 1. Therefore $\sin \left(\tan ^{-1}(2)\right)=\sin (y)=2 / \sqrt{5}$.

Solution 2: Again, with $y=\tan ^{-1}(2)$, you know $\tan y=2$ and $0<y<\pi / 2$ so $\sin \left(\tan ^{-1}(2)\right)=\sin y>0$. Now recall

$$
\sin ^{2} y+\cos ^{2} y=1
$$

Dividing by $\sin ^{2} y$, get $1+\frac{1}{\tan ^{2} y}=\frac{1}{\sin ^{2} y}$. Plugging in $\tan y=2$, get

$$
1+\frac{1}{4}=\frac{1}{\sin ^{2} y}, \quad \text { so } \quad \sin ^{2} y=\frac{4}{5}
$$

Since $\sin y>0$, we have $\sin y=\sqrt{4 / 5}=2 / \sqrt{5}$.
(Note: In fact the argumet of either solution shows that $\sin \left(\tan ^{-1}(x)\right)=\frac{x}{\sqrt{x^{2}+1}}$.)
(2) (10 pts) Let $f(x)=\ln (x-1)$ and $g(x)=\frac{3 x+1}{x}$. What is the domain of the composite function $g \circ f$?

Solution: The domain of f is $(1, \infty)$ and the domain of g is $\mathbb{R}-\{0\}$. So the domain of $f \circ g$ consists of numbers satisfying the two conditions:

- x is in the domain of f, namely $x>1$.
- $\ln (x-1)$ is in the domain of g, so $\ln (x-1) \neq 0$, namely $x-1 \neq 1$. So the condition is $x \neq 2$.
Therefore the answer is the set of numbers $x>1$ such that $x \neq 2$. Namely the answer is $(1,2) \cup(2, \infty)$.

3. (15 pts) Let $f(x)=\left\{\begin{array}{cc}|x| / x^{3}, & x<0, \\ \sin (1 / x), & x>0 .\end{array}\right.$ Find $\lim _{x \rightarrow 0^{-}} x^{2} f(x)$ and $\lim _{x \rightarrow 0^{+}} x^{2} f(x)$.

For either limit, if the limit does not exist, explain why.
Solution:
For the limit as $x \rightarrow 0^{-}$, we have $x<0$, so $|x|=-x$ and $f(x)=|x| / x^{3}=-1 / x^{2}$. Therefore

$$
\lim _{x \rightarrow 0^{-}} x^{2}\left(-1 / x^{2}\right)=\lim _{x \rightarrow 0^{-}}(-1)=-1
$$

Notice that $-1 \leq \sin \left(1 / x^{2}\right) \leq 1$. Multiplying x^{2}, which is positive for $x>0$, we obtain

$$
-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}
$$

Since $\lim _{x \rightarrow 0^{+}}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0$, the squeeze theorem implies that

$$
\lim _{x \rightarrow 0^{+}} x^{2} \sin (1 / x)=0 .
$$

4. (15 pts) Explain how the graph of the function $k(x)=\sqrt{2-x}+3$ is obtained from the graph $y=\sqrt{x}$ by a sequence of basic transformations (shifting, expanding, shrinking, or reflecting the graph). Make sure to indicate in what order the transformations are performed. Using this, sketch the graph of $\sqrt{2-x}+3$ in the $x y$-plane.

Solution: This function comes from a sequence of transformations of $f(x)=\sqrt{x}$. To graph it, first try drawing the graph of $f(x)$ (in pink) to remind yourself of the shape of the square root graph. Then try graphing $g(x)=\sqrt{-x}$ (in orange). This is a reflection over the y axis. Next graph $h(x)=\sqrt{2-x}$ (in green). This is a shift to the right by 2 . Finally, graph the original function $k(x)$ (in blue). This is $h(x)$ shifted up by 3 .
(Note: The answer is not unique. As long as your sequence of transformations does give $y=\sqrt{2-x}+3$, your answer is considered correct.)

5. (15 pts) Consider the function $f(x)=\ln \left(2+e^{x}\right)$ on \mathbb{R}, which is one-to-one. Find the formula for $f^{-1}(x)$.

Solution:
We solve $y=\ln \left(2+e^{x}\right)$ for x. By taking exponential, we have

$$
e^{y}=2+e^{x}
$$

so $e^{y}-2=e^{x}$. Taking ln we get

$$
x=\ln \left(e^{y}-2\right) .
$$

Thus the answer is $f^{-1}(y)=\ln \left(e^{y}-2\right)$, or $f^{-1}(x)=\ln \left(e^{x}-2\right)$.
6. (20 pts) Compute the following limits if they exist. For either limit, if the limit does not exist, explain why.
(1) $\lim _{x \rightarrow 1}\left(\frac{1}{1-x}-\frac{3}{1-x^{3}}\right)$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow 1}\left(\frac{1}{1-x}-\frac{3}{1-x^{3}}\right)=\lim _{x \rightarrow 1}\left(\frac{1+x+x^{2}}{(1-x)\left(1+x+x^{2}\right)}-\frac{3}{(1-x)\left(1+x+x^{2}\right)}\right) \\
=\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{(1-x)\left(1+x+x^{2}\right)}=\lim _{x \rightarrow 1} \frac{(x+2)(x-1)}{(1-x)\left(1+x+x^{2}\right)} \\
=\lim _{x \rightarrow 1} \frac{-(x+2)}{\left(1+x+x^{2}\right)}=\frac{-3}{3}=-1 .
\end{gathered}
$$

(2) $\lim _{t \rightarrow 0}\left(\frac{\sqrt{1+t}-\sqrt{1-t}}{t}\right)$

Solution:

$$
\begin{gathered}
\lim _{t \rightarrow 0}\left(\frac{\sqrt{1+t}-\sqrt{1-t}}{t}\right)=\lim _{t \rightarrow 0}\left(\frac{(\sqrt{1+t}-\sqrt{1-t})(\sqrt{1+t}+\sqrt{1-t})}{t(\sqrt{1+t}+\sqrt{1-t})}\right) \\
=\lim _{t \rightarrow 0}\left(\frac{(1+t)-(1-t)}{t(\sqrt{1+t}+\sqrt{1-t})}\right)=\lim _{t \rightarrow 0}\left(\frac{2 t}{t(\sqrt{1+t}+\sqrt{1-t})}\right) \\
=\lim _{t \rightarrow 0}\left(\frac{2}{\sqrt{1+t}+\sqrt{1-t}}\right)=\frac{2}{1+1}=1 .
\end{gathered}
$$

